Dissimilar Joining of Pure Aluminum to SiCp/Al-MMCs Using an AlMgGaLi Active Interlayer Foil

  • Biqiang ChenEmail author
  • Guifeng ZhangEmail author


To broaden the application of advanced metal matrix composites in the electronic packaging industry, a lead-free AlMgGaLi interlayer was developed for active soldering of aluminum to aluminum metal matrix composites. The effect of joining pressure on the microstructure evolution, interfacial wettability and mechanical properties of the dissimilar joints was investigated. The experimental results indicated that as the joining pressure increased, the mean thickness of the bond seam was 46.02 μm, and solidification of a solid solution occurred (detected by SEM/XRD analysis). The composition of the Al-based solid solution (in atom%) was 86.52% Al, 9.32% Mg, 2.56% O, 1.5% Ga and 0.1% Si. The pressure improved the interfacial wettability by enhancing the atom diffusion between the interlayer and parent materials. The joint shear strength initially increased and then decreased, and a sound joint with a maximum shear strength of ~ 45 MPa was produced at 450 °C and 0.75 MPa. The fracture crack initially occurred at the interfaces of the Al/filler metal and then propagated mainly along the Al2O3 layer on the Al side. A novel model describing the pressure-induced microstructure changes within the joint and the formation of an Al2O3 diffusion barrier layer at the Al/filler metal interface is proposed.


active soldering aluminum metal matrix composites dissimilar joints lead-free Al-based interlayer 



The present research was funded by the National Natural Science Foundation of China (No. 51275390) and the China Scholarship Council. The authors would like to express sincere gratitude to Prof. Z. Chen (School of Materials Science and Engineering, Nanyang Technological University) and Dr. C. Xin for their careful reading and valuable criticisms to improve this manuscript.


  1. 1.
    J.W. Kaczmar, K. Pietrzak, and W. Wiosinki, The Production and Application of Metal Matrix Composite Materials, J. Mater. Process Technol., 2000, 106(1/2/3), p 58–67CrossRefGoogle Scholar
  2. 2.
    S. Mallik, N. Ekere, C. Best, and R. Bhatti, Investigation of Thermal Management Materials for Automotive Electronic Control Units, Appl. Therm. Eng., 2011, 31(2/3), p 355–362CrossRefGoogle Scholar
  3. 3.
    M. Occhionero, R.W. Adams, and D. Saums, AlSiC for Optoelectronic Thermal Management and Packaging Designs, Proc. SPIE, 2003, 5288, p 495–499Google Scholar
  4. 4.
    M. Occhionero, R.A. Hay, R.W. Adams, and K.P. Fennessy, Aluminum Silicon Carbide (AlSiC) Thermal Management Packaging for High Density Packaging Applications, Proc. SPIE, 1999, 3830, p 34–39Google Scholar
  5. 5.
    D.C. Hopkins, D.W. Kellerman, C. Basaran, and J. Gomez, Aluminum-Based High-Temperature (> 200 °C) Packaging for SiC Power Converters, Proceedings IMAPS 2006, San Diego, October 8–12, p 734–741Google Scholar
  6. 6.
    P. Eslami and A.K. Taheri, An Investigation on Diffusion Bonding of Aluminum to Copper Using Equal Channel Angular Extrusion Process, Mater. Lett., 2011, 65(12), p 1862–1864CrossRefGoogle Scholar
  7. 7.
    Y. Nagatomo, and T. Nagase, Proceedings of 17th International Conference of Electric Vehicles (EVS-17), 2000, CDROMGoogle Scholar
  8. 8.
    Y. Kuromitsu, Y. Nagatomo, K. Akiyama, N. Shibata, and Y. Ikuhara, Direct-Bonded Aluminum on Aluminum Nitride Substrates by Transient Liquid Phase Bonding, J. Ceram. Soc. Jpn., 2017, 125(3), p 165–167CrossRefGoogle Scholar
  9. 9.
    M. Toriumi, The Development of Al Circuit Substrate for Power Module, Proc. IMC, 1994, 1994, p 104–109Google Scholar
  10. 10.
    T. Harada, and Y. Baba, Proceedings of 15th International Conference of Electric Vehicles (EVS-15), 1998, CDROMGoogle Scholar
  11. 11.
    A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, and S. Mucklejohn, Current Problems and Possible Solutions in High-Temperature Lead-free Soldering, J. Mater. Eng. Perform., 2012, 21(5), p 629–637CrossRefGoogle Scholar
  12. 12.
    A. Urena, M.D. Escalera, and L. Gil, Influence of Interface Reactions on Fracture Mechanisms in TIG Arc-Welded Aluminium Matrix Composites, Compos. Sci. Technol., 2000, 60(4), p 613–622CrossRefGoogle Scholar
  13. 13.
    L.M. Liu, M.L. Zhu, and L.X. Pan, Studying of Micro-bonding in Diffusion Welding Joint for Composite, Mater. Sci. Eng. A, 2001, 315(1–2), p 103–107Google Scholar
  14. 14.
    P. Wang, D. Xu, Y. Zhai, and J. Niu, The Dissimilar Brazing of Kovar Alloy to SiCp/Al Composites Using Silver-Based Filler Metal Foil, Appl. Phys. A Mater, 2017, 123(9), p 569–580CrossRefGoogle Scholar
  15. 15.
    X. Zhou, Y. Dong, C. Liu, Y. Liu, L. Yu, J. Chen, and J. Yang, Transient Liquid Phase Bonding of CLAM/CLAM Steels with Ni-Based Amorphous Foil as the Interlayer, Mater. Des., 2015, 88, p 1321–1325CrossRefGoogle Scholar
  16. 16.
    D. Wang, Q.Z. Wang, B.L. Xiao, and Z.Y. Ma, Achieving Friction Stir Welded SiCp/Al-Cu-Mg Composite Joint of Nearly Equal Strength to Base Material at High Welding Speed, Mater. Sci. Eng. A, 2014, 589, p 271–274CrossRefGoogle Scholar
  17. 17.
    K. Suganuma, Advances in Lead-Free Electronics Soldering, Curr. Opin. Solid State Mater. Sci., 2001, 5, p 55–64CrossRefGoogle Scholar
  18. 18.
    C.Y. Liu, Morphology of Wetting Reactions of SnPb Alloys on Cu as a Function of Alloy Composition, J. Mater. Res., 1998, 13, p 37–44CrossRefGoogle Scholar
  19. 19.
    J.W. Jang, Spalling of Cu3Sn Intermetallics in High-lead 95Pb-5Sn Solder Bumps on Cu Under Bump Metallization During Solid-state Annealing, J. Appl. Phys., 2004, 95(12), p 8286–8289CrossRefGoogle Scholar
  20. 20.
    K.S. Kim, Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu, Microelectron. Reliab., 2003, 43, p 259–267CrossRefGoogle Scholar
  21. 21.
    X.H. Qu, L. Zhang, W.U. Mao, and S.B. Ren, Review of Metal Matrix Composites with High Thermal Conductivity for Thermal Management Applications, Prog. Nat. Sci. Mater., 2011, 21(3), p 189–197CrossRefGoogle Scholar
  22. 22.
    V.K. Singh, S. Chauhan, P.C. Gope, and A.K. Chaudhary, Enhancement of Wettability of Aluminum Based Silicon Carbide Reinforced Particulate Metal Matrix Composite, High Temp. Mater. Process., 2015, 34(2), p 163–170Google Scholar
  23. 23.
    T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Löffler, and P.J. Uggowitzer, Aluminium Carbide Formation in Interpenetrating Graphite/Aluminum Composites, Mater. Sci. Eng. A, 2007, 448(1–2), p 1–6CrossRefGoogle Scholar
  24. 24.
    A. Urena, J.M. Gomez de Salazar, and M.D. Escalera, Diffusion Bonding of an Aluminium-Copper Alloy Reinforced with Silicon Carbide Particle (AA2014/SiC/13p) Using Metallic Interlayers, Scr. Mater., 1996, 35(11), p 1285–1293CrossRefGoogle Scholar
  25. 25.
    A. Urena, J.M. Gomez de Salazar, and M.D. Escalera, Interfacial Characterization Using Transmission Electron Microscopy Examination of the Diffusion Bonding of SiC Whisker-Reinforced Aluminum Alloys, J. Mater. Res., 1999, 14(3), p 811–816CrossRefGoogle Scholar
  26. 26.
    A. Urena, J.M. Gomez de Salazar, and M.D. Escalera, Diffusion Bonding of Alumina Reinforced 6061 Alloy Metal Matrix Composite Using Al-Li Interlayer, Mater. Sci. Technol., 2000, 16, p 103–109CrossRefGoogle Scholar
  27. 27.
    W.X. Chen, S.B. Xue, and H. Wang, Wetting Properties and Interfacial Microstructures of Sn-Zn-xGa Solders on Cu Substrate, Mater. Des., 2010, 31(4), p 2196–2200CrossRefGoogle Scholar
  28. 28.
    D.M. Jacobson, G. Humpston, and S.P.S. Sangha, A New Low-Melting-Point Aluminum Braze, Weld J., 1996, 75(8), p 243–249Google Scholar
  29. 29.
    L.L. Chang, X.B. He, and M. Wu, Brazing of SiCp/Al Composites for Microelectronic Packaging, Mater. Sci. Eng. Powder Metall., 2010, 15(3), p 219–224Google Scholar
  30. 30.
    P. Wang, D. Xu, and J. Niu, Vacuum Brazing of Electroless Ni-P Alloy-Coated SiCp/Al Composites Using Aluminum-Based Filler Metal Foil, Appl. Phys. A Mater. Sci. Process., 2016, 122(12), p 1069–1082CrossRefGoogle Scholar
  31. 31.
    G. Zhang, B. Chen, M. Jin, and J. Zhang, Active-Transient Liquid Phase (A-TLP) Bonding of High Volume Fraction SiC Particle Reinforced A356 Matrix Composite, Mater. Trans., 2015, 56(2), p 212–217CrossRefGoogle Scholar
  32. 32.
    G. Zhang, W. Su, and A. Suzumura, Active-Transient Liquid phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si-xTi Foils as Active Interlayer, Metall. Mater. Trans. B, 2016, 47(3), p 2026–2039CrossRefGoogle Scholar
  33. 33.
    G. Zhang, J. Cai, B. Chen, and T. Xu, Availability of In-Situ Reinforced Active-transient Liquid Phase Bond with Good Wettability for 70 vol.% SiCp/A356 Composite Using Al-Mg-Ga-Ti Interlayer, Mater. Des., 2016, 110, p 653–662CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anChina

Personalised recommendations