Journal of Materials Engineering and Performance

, Volume 28, Issue 8, pp 5047–5062 | Cite as

Hot Corrosion Behavior of Ni20Cr Alloy in NaVO3 Molten Salt

  • P. D. Silva-Leon
  • O. Sotelo-MazonEmail author
  • G. Salinas-Solano
  • J. Porcayo-Calderon
  • J. G. Gonzalez-Rodriguez
  • S. Valdez
  • L. Martinez-Gomez


The hot corrosion behavior of Ni20Cr alloy was evaluated in NaVO3 at temperatures of up to 700 °C and compared to Inconel 600. The performance of both the alloys was evaluated using electrochemical measurements, such as potentiodynamic polarization, linear polarization resistance, and electrochemical impedance spectroscopy measurements, as well as a cyclic corrosion test. The results show that the Ni20Cr alloy has better corrosion performance than the Inconel 600. The better performance of the Ni20Cr alloy was due to its ability to develop a stable protector oxide (Cr2O3) on its surface.


cyclic corrosion electrochemical techniques hot corrosion Ni20Cr alloy oxide 



O. Sotelo-Mazon is thankful to the postdoctoral fellowship DGAPA-UNAM. Jose Juan Ramos Hernandez is thanked for the support in the electron microscopy analysis.


  1. 1.
    N. Otsuka, Shreir’s Corrosion-Volume 1: Basic Concepts, High Temperature Corrosion, Fireside Corrosion, 4th ed., Academic Press, New York, 2010, p 457–481CrossRefGoogle Scholar
  2. 2.
    I.B. Singh, Corrosion and Sulphate Ion Reduction Studies on Ni and Pt Surfaces in With and Without V2O5 in (Li, Na, K)2SO4 Melt, Corr. Sci., 2003, 45, p 2285–2292CrossRefGoogle Scholar
  3. 3.
    O. Sotelo, C. Cuevas, J. Porcayo, V.M. Salinas, and G. Izquierdo, Corrosion Behavior of Pure Cr, Ni, and Fe Exposed to Molten Salts at High Temperature, Adv. Mater. Sci. Eng., 2014, CrossRefGoogle Scholar
  4. 4.
    R.A. Mahesh, R. Jayaganthan, and S. Prakash, Evaluation of Hot Corrosion Behaviour of HVOF Sprayed Ni–5Al and NiCrAl Coatings in Coal Fired Boiler Environment, Surf. Eng., 2010, 26(6), p 413–421CrossRefGoogle Scholar
  5. 5.
    X. Montero and M.C. Galetz, Inhibitors and Coatings Against Vanadate-Containing Oil Ash Corrosion of Boilers, Surf. Coat. Technol., 2016, 304, p 211–221CrossRefGoogle Scholar
  6. 6.
    R.A. Rapp, Hot Corrosion of Materials: A Fluxing Mechanism?, Corr. Sci., 2002, 44, p 209–221CrossRefGoogle Scholar
  7. 7.
    S. Bose, High Temperature Coatings, Chap. 6-Oxidation and Corrosion Resistance Coatings, 2nd ed., Elsevier, New York, 2018, p 97–198, CrossRefGoogle Scholar
  8. 8.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion and Performance of Nickel-Based Coatings, Corr. Sci., 2006, 90(1), p 41–47Google Scholar
  9. 9.
    F. Weng, H. Yu, C. Chen, and K. Wan, Influence of Nb and Y on Hot Corrosion Behavior of Ni–Cr-based Superalloys, Mater. Manuf. Processes, 2015, 30, p 677–684CrossRefGoogle Scholar
  10. 10.
    J. Stringer, High-Temperature Corrosion of Superalloys, Mater. Sci. Technol., 1987, 3(7), p 482–493CrossRefGoogle Scholar
  11. 11.
    Y. Longa, Y.S. Zhang, M. Takemoto, and R.A. Rapp, Hot Corrosion of Nickel-Chromium and Nickel-Chromium-Aluminum Thermal-Spray Coatings by Sodium Sulfate-Sodium Metavanadate Salt, Corrosion, 1996, 52(9), p 680–689CrossRefGoogle Scholar
  12. 12.
    J. Porcayo, J.J. Ramos, J. Mayen, E. Porcayo, G.K. Pedraza, J.G. Gonzalez, and L. Martinez, High Temperature Corrosion of Nickel in NaVO3-V2O5 Melts, Adv. Mater. Sci. Eng., 2017, CrossRefGoogle Scholar
  13. 13.
    C.L. Zeng and J. Li, Electrochemical Impedance Studies of Molten (0.9Na, 0.1 K)2SO4-Induced Hot Corrosion of the Ni-Based Superalloy M38G at 900°C in Air, Electrochim. Acta, 2005, 50, p 5533–5538CrossRefGoogle Scholar
  14. 14.
    D. Deb, S.R. Iyer, and V.M. Radhakrishnan, A Comparative Study of Oxidation and Hot Corrosion of a Cast Nickel Base Superalloy in Different Corrosive Environments, Mater. Lett., 1996, 29(1–3), p 19–23CrossRefGoogle Scholar
  15. 15.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Evaluation of Hot Corrosion Resistance of HVOF Coatings on a Ni-Based Superalloy in Molten Salt Environment, Mater. Sci. Eng. A, 2006, 430, p 64–78CrossRefGoogle Scholar
  16. 16.
    E.M. Zahrani and A.M. Alfantazi, Molten Salt Induced Corrosion of Inconel 625 Superalloy in PbSO4–Pb3O4–PbCl2–Fe2O3–ZnO Environment, Corr. Sci., 2012, 65, p 340–359CrossRefGoogle Scholar
  17. 17.
    N.S. Flores and C. Cuevas, High-Temperature Corrosion Investigation of the Inconel-600 in Molten Sulfate/Vanadate Mixtures Using Electrochemical Techniques, Int. J. Electrochem. Sci., 2017, 12, p 9882–9895CrossRefGoogle Scholar
  18. 18.
    P.S. Sidky and M.G. Hocking, The Hot Corrosion of Ni-Based Ternary Alloys and Superalloys for Application in Gas Turbines Employing Residual Fuels, Corr. Sci., 1987, 27(5), p 499–530CrossRefGoogle Scholar
  19. 19.
    J. Porcayo, V.M. Salinas, R.A. Rodriguez, and L. Martinez, Effect of the NaVO3-V2O5 Ratio on the High Temperature Corrosion of Chromium, Int. J. Electrochem. Sci., 2015, 10(5), p 4928–4945Google Scholar
  20. 20.
    C. Cuevas, J. Uruchurtu, J. González, G. Izquierdo, J. Porcayo, and U. Cano, Corrosion Evaluation of Alloy 800 in Sulfate/Vanadate Molten Salts, Corrosion, 2004, 6(6), p 549–560Google Scholar
  21. 21.
    O. Sotelo, J. Porcayo, C. Cuevas, G. Salinas, J.J. Ramos, E. Vazquez, and L. Martinez, Corrosion Performance of Ni-Based Alloys in Sodium Metavanadate, Int. J. Electrochem. Sci., 2016, 11, p 1868–1882Google Scholar
  22. 22.
    I. Gurrappa and D.V. Reddy, Characterisation of Titanium Alloy, IMI-834 for Corrosion Resistance Under Different Environmental Conditions, J. Alloys Compd., 2005, 390(1–2), p 270–274CrossRefGoogle Scholar
  23. 23.
    A. Nishikata and S. Haruyama, Electrochemical Monitoring of the Corrosion of Ni, Fe, and Their Alloys in Molten Salts, Corrosion, 1986, 42(10), p 578–584CrossRefGoogle Scholar
  24. 24.
    M. Stern and A.L. Geary, Electrochemical Polarization, J. Electrochem. Soc., 1957, 104(9), p 56–63CrossRefGoogle Scholar
  25. 25.
    K.J.L. Iyer, S.R. Iyer, and V.M. Radhakrishnan, Some Aspects of Hot Corrosion of Superni by Vanadium, Can. Metall. Q., 1987, 26(1), p 53–59CrossRefGoogle Scholar
  26. 26.
    C.H. Lin and J.G. Duh, Electrochemical impedance Spectroscopy (EIS) Study on Corrosion Performance of CrAlSiN Coated Steels in 3.5 wt% NaCl Solution, Surf. Coat. Technol., 2009, 204(6–7), p 784–787CrossRefGoogle Scholar
  27. 27.
    C.L. Zeng, W. Wang, and W.T. Wu, Electrochemical Impedance Models for Molten Salt Corrosion, Corr. Sci., 2001, 43(4), p 787–801CrossRefGoogle Scholar
  28. 28.
    O. Sotelo, J. Porcayo, C. Cuevas, J.J. Ramos, J.A. Ascencio, and L. Martinez, EIS Evaluation of Fe, Cr, and Ni in NaVO3 at 700°C, J. Spectrosc., 2014, CrossRefGoogle Scholar
  29. 29.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion Performance of a NiCr Coated Ni-Based Alloy, Scr. Mater., 2006, 55(2), p 179–182CrossRefGoogle Scholar
  30. 30.
    S.P. Jeng, P.H. Holloway, and C.D. Batich, Surface Passivation of Ni/Cr Alloy at Room Temperature, Surf. Sci., 1990, 227(3), p 278–290CrossRefGoogle Scholar
  31. 31.
    H. Ruiz, J. Porcayo, J.E. Garcia, J.M. Alvarado, L. Martinez, L.G. Trapaga, and J. Muñoz, Electrochemical Corrosion of HVOF-Sprayed NiCoCrAlY Coatings in CO2-Saturated Brine, J. Therm. Spray Technol., 2016, 25(7), p 1330–1343CrossRefGoogle Scholar
  32. 32.
    H. Ruiz, J. Porcayo, J.M. Alvarado, A.G. Mora, L. Martinez, L.G. Trápaga, and J. Muñoz, Influence of Oxidation Treatments and Surface Finish on the Electrochemical Behavior of HVOF Ni-20Cr Coatings, J. Mater. Eng. Perform., 2017, CrossRefGoogle Scholar
  33. 33.
    N. Jegadeeswaran, M.R. Ramesh, and K.U. Bhat, Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25% (Cr3C2-25(Ni20Cr)) + NiCrAlY Coating, Int. J. Corr., 2013, CrossRefGoogle Scholar
  34. 34.
    N. Babu, R. Balasubramaniam, and A. Ghosh, High-Temperature Oxidation of Fe3Al-Based Iron Aluminides in Oxygen, Corr. Sci., 2001, 43(12), p 2239–2254CrossRefGoogle Scholar
  35. 35.
    N.K. Mishra, A.K. Rai, S.B. Mishra, and R. Kumar, Hot Corrosion Behaviour of Detonation Gun Sprayed Stellite-6 and Stellite-21 Coating on Boiler Steel SAE 431 at 900 C, J. Corr. Int., 2014, CrossRefGoogle Scholar
  36. 36.
    N. Bala, H. Singh, and S. Prakash, High-Temperature Oxidation Studies of Cold Sprayed Ni–20Cr and Ni–50Cr Coatings on SAE 213-T22 Boiler Steel, Appl. Surf. Sci., 2009, 255, p 6862–6869CrossRefGoogle Scholar
  37. 37.
    Y.S. Hwang and R.A. Rapp, Synergistic dissolution of oxides in molten sodium sulfate, J. Electrochem. Soc., 1990, 137(4), p 1276–1280CrossRefGoogle Scholar
  38. 38.
    H. Singh, S. Prakash, D. Puri, and D.M. Phase, Cyclic Oxidation Behavior of Some Plasma-Sprayed Coatings in Na2SO4-60%V2O5 Environment, J. Mater. Eng. Perform., 2006, 15(6), p 729–741CrossRefGoogle Scholar
  39. 39.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Characterisations of HVOF Sprayed NiCrBSi Coatings on Ni- and Fe-Based Superalloys and Evaluation of Cyclic Oxidation Behaviour of some Ni-Based Superalloys in Molten Salt Environment, Thin Solid Films, 2006, 515(1), p 95–105CrossRefGoogle Scholar
  40. 40.
    S. Saladi, J.V. Menghani, and S. Prakash, Characterization and Evaluation of Cyclic Hot Corrosion Resistance of Detonation-Gun Sprayed Ni-5Al Coatings on Inconel-718, J. Therm. Spray Technol., 2015, 24(5), p 778–788CrossRefGoogle Scholar
  41. 41.
    S. Kamal, R. Jayaganthan, and S. Prakash, Evaluation of Cyclic Hot Corrosion Behaviour of Detonation Gun Sprayed Cr3C2–25%NiCr Coatings on Nickel- and Iron-Based Superalloys, Surf. Coat. Technol., 2009, 203(8), p 1004–1013CrossRefGoogle Scholar
  42. 42.
    G. Kaushal, H. Singh, and S. Prakash, High Temperature Corrosion Behaviour of HVOF-Sprayed Ni-20Cr Coating on Boiler Steel in Molten Salt Environment at 900°C, Int. J. Surf. Sci. Eng., 2011, 5(5–6), p 415–433CrossRefGoogle Scholar
  43. 43.
    S.S. Chatha, H.S. Sidhu, and B.S. Sidhu, High Temperature Hot Corrosion Behaviour of NiCr and Cr3C2–NiCr Coatings on T91 Boiler Steel in an Aggressive Environment at 750°C, Surf. Coat. Technol., 2012, 206(19–20), p 3839–3850CrossRefGoogle Scholar
  44. 44.
    S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, Hot Corrosion Behavior of Detonation Gun Sprayed Cr3C2–NiCr Coatings on Ni and Fe-Based Superalloys in Na2SO4–60% V2O5 Environment at 900°C, J. Alloys Compd., 2008, 463(1–2), p 358–372CrossRefGoogle Scholar
  45. 45.
    F. Guangyan, Q. Zeyan, C. Jingyu, L. Qun, and S. Yong, Hot Corrosion Behavior of Ni-Base Alloys Coated with Salt Film of 75%Na2SO4 + 25%NaCl at 900°C, Rare Met. Mater. Eng., 2015, 44(5), p 1112–1115CrossRefGoogle Scholar
  46. 46.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Hot Corrosion Studies of HVOF Sprayed Cr3C2–NiCr and Ni–20Cr Coatings on Nickel-Based Superalloy at 900°C, Surf. Coat. Technol., 2006, 201(3–4), p 792–800CrossRefGoogle Scholar
  47. 47.
    A. Rahmana, V. Chawla, R. Jayaganthana, R. Chandra, and R. Ambardar, Study of Cyclic Hot Corrosion of Nanostructured Cr/Co–Al Coatings on Superalloy, Mater. Chem. Phys., 2011, 126(1–2), p 253–261CrossRefGoogle Scholar
  48. 48.
    T.S. Sidhu, S. Prakash, and R.D. Agrawal, Performance of High-Velocity Oxyfuel-Sprayed Coatings on an Fe-Based Superalloy in Na2SO4-60%V2O5 Environment at 900°C Part II: Hot Corrosion Behavior of the Coatings, J. Mater. Eng. Perform., 2006, 15(1), p 130–138CrossRefGoogle Scholar
  49. 49.
    R.A. Mahesh, R. Jayaganthan, and S. Prakash, A Study on Hot Corrosion Behaviour of Ni–5Al Coatings on Ni- and Fe-Based Superalloys in an Aggressive Environment at 900°C, J. Alloys Compd., 2008, 460(1–2), p 220–231CrossRefGoogle Scholar
  50. 50.
    F. Wang, X. Tian, Q. Li, L. Li, and X. Peng, Oxidation and Hot Corrosion Behavior of Sputtered Nanocrystalline Coating of Superalloy K52, Thin Solid Films, 2008, 516(16), p 5740–5747CrossRefGoogle Scholar
  51. 51.
    N. Arivazhagan, S. Narayanan, S. Singh, S. Prakash, and G.M. Reddy, High Temperature Corrosion Studies on Friction Welded Low Alloy Steel and Stainless Steel in Air and Molten Salt Environment at 650°C, Mater. Des., 2012, 34, p 459–468CrossRefGoogle Scholar
  52. 52.
    J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, and L. Martinez, Protection of Carbon Steel against Hot Corrosion Using Thermal Spray Si- and Cr-Base Coatings, J. Mater. Eng. Perform., 1998, 7(1), p 79–87CrossRefGoogle Scholar
  53. 53.
    A. Luna, J. Porcayo, G. Salinas, C.D. Arrieta, V.M. Salinas, and L. Martinez, Electrochemical Performance of Fe-Al Intermetallic alloys with Addition of Li, Ni and Ce in NaVO3 at 700 C, Int. J. Electrochem. Sci., 2013, 8(4), p 4641–4653Google Scholar
  54. 54.
    G. Salinas, J.G. Gonzalez, J. Porcayo, V.M. Salinas, G. Lara, and A. Martinez, Electrochemical Study on Effect of Au, Ag, Pd and Pt on Corrosion Behaviour of Fe3Al in Molten NaCl–KCl, Corros. Eng. Sci. Technol., 2014, 49(5), p 378–385CrossRefGoogle Scholar
  55. 55.
    G. Salinas, J. Porcayo, J.G. Gonzalez, V.M. Salinas, J.A. Ascencio, and L. Martinez, High Temperature Corrosion of Inconel 600 in NaCl-KCl Molten Salts, Adv Mater. Sci Eng, 2014, CrossRefGoogle Scholar
  56. 56.
    L. Romo, J.G. Gonzalez, J. Porcayo, R. Guardian, and V.M. Salinas, Study on the Effect of Co, Cr and Ti on the Corrosion of Fe40Al Intermetallic in Molten NaCl-KCl Mixture, Intermetallics, 2015, 67, p 156–165CrossRefGoogle Scholar
  57. 57.
    V. Petley, S. Sathishkumar, K.H.T. Raman, G.M. Rao, and U. Chandrasekhar, Microstructural and Mechanical Characteristics of Ni–Cr thin Films, Mater. Res. Bull., 2015, 66, p 59–64CrossRefGoogle Scholar
  58. 58.
    D. Lou, C. He, S. Shang, C. Liu, and Q. Cai, Microstructure and Performances of Graphite Scattered Cr3C2-NiCr Composites Prepared by Laser Processing, Mater. Lett., 2013, 93, p 304–307CrossRefGoogle Scholar
  59. 59.
    V. Mannava, A. Sambasiva Rao, M. Kamaraj, and R. Sankar Kottada, Influence of Two Different Salt Mixture Combinations of Na2SO4-NaCl-NaVO3 on Hot Corrosion Behavior of Ni-Base Superalloy Nimonic 263 at 800°C, J. Mater. Eng. Perform., 2019, 28(2), p 1077–1093CrossRefGoogle Scholar
  60. 60.
    D. Pradhan, G.S. Mahobia, K. Chattopadhyay, and V. Singh, Severe Hot Corrosion of the Superalloy IN718 in Mixed Salts of Na2SO4 and V2O5 at 700°C, J. Mater. Eng. Perform., 2018, 27(8), p 4235–4243CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • P. D. Silva-Leon
    • 1
  • O. Sotelo-Mazon
    • 2
    Email author
  • G. Salinas-Solano
    • 2
  • J. Porcayo-Calderon
    • 3
  • J. G. Gonzalez-Rodriguez
    • 3
  • S. Valdez
    • 2
  • L. Martinez-Gomez
    • 2
    • 4
  1. 1.Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  2. 2.Instituto de Ciencias FísicasUniversidad Nacional Autónoma de México (UNAM)CuernavacaMexico
  3. 3.CIICApUniversidad Autónoma del Estado de MorelosCuernavacaMexico
  4. 4.Corrosion y Protección (CyP)Mexico CityMexico

Personalised recommendations