Advertisement

Hot Deformation Behavior and Processing Maps of As-Cast Hypoeutectic Al-Si-Mg Alloy

  • Zhenglong Liang
  • Qi ZhangEmail author
  • Liqun Niu
  • Wei Luo
Article
  • 14 Downloads

Abstract

The hot deformation behavior of as-cast hypoeutectic Al-Si-Mg alloy has been investigated through hot compression tests at temperatures between 573 and 773 K and the strain rate of 0.001-1 s−1. A modified Hansel-Spittel constitutive model is proposed, which takes the effect of strain rate on strain hardening into account. The processing maps are established based on the dynamic material model and the Murty criterion. Microstructure observations show that dynamic recovery dominates the dynamic softening behavior, and recrystallized grains are found in the sample tested at 773 K with strain rate of 0.01 and 0.001 s−1. The size of Si particles decreases by about 64.73% with the effective strain increasing from 0 to 1.2. The optimal hot processing parameters of as-cast hypoeutectic Al-Si-Mg alloy are established based on the processing maps.

Keywords

dynamic recovery Hansel-Spittel model hot deformation behavior hypoeutectic Al-Si-Mg alloy processing maps 

Notes

Acknowledgments

The authors are grateful for the support of the National Natural Science Foundation of China (Project Number: 51875441). We also thank Mr Zijun Ren at Instrument Analysis Center of Xi’an Jiaotong University for his assistance with EBSD operation.

References

  1. 1.
    P. Pandee, C.M. Gourlay, S.A. Belyakov, U. Patakham, G. Zeng, and C. Limmaneevichitr, AlSi2Sc2 Intermetallic Formation in Al-7Si-0.3Mg-xSc Alloys and Their Effects on As-Cast Properties, J. Alloy. Compd., 2018, 731, p 1159–1170CrossRefGoogle Scholar
  2. 2.
    B. Lin, H.Y. Li, R. Xu et al., Effects of Vanadium on Modification of Iron-Rich Intermetallics and Mechanical Properties in A356 Cast Alloys with 1.5 wt.% Fe, J. Mater. Eng. Perform., 2019, 28(1), p 475–484CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, H.L. Zheng, Y. Liu, L. Shi, R.F. Xu, and X.L. Tian, Cluster-Assisted Nucleation of Silicon Phase on Hypoeutectic Al-Si Alloy with Further Inoculation, Acta Mater., 2014, 70, p 162–173CrossRefGoogle Scholar
  4. 4.
    W.D. Zhang, Y. Liu, J. Yang, J.Z. Dang, H. Xu, and Z.M. Du, Effects of Sc Content on the Microstructure of As-Cast Al-7 wt.% Si Alloys, Mater. Charact., 2012, 66, p 104–110CrossRefGoogle Scholar
  5. 5.
    Z.N. Chen, H.J. Kang, G.H. Fan et al., Grain Refinement of Hypoeutectic Al-Si Alloys with B, Acta Mater., 2016, 120, p 168–178CrossRefGoogle Scholar
  6. 6.
    C. Xu, F. Wang, H. Mudassar et al., Effect of Sc and Sr on the Eutectic Si Morphology and Tensile Properties of Al-Si-Mg Alloy, J. Mater. Eng. Perform., 2017, 26(4), p 1605–1613CrossRefGoogle Scholar
  7. 7.
    P.R. Guru, F. Khan, S.K. Panigrahi et al., Enhancing Strength, Ductility and Machinability of a Al-Si Cast Alloy by Friction Stir Processing, J. Manuf. Process., 2015, 18, p 67–74CrossRefGoogle Scholar
  8. 8.
    M.M. Marin, A.M. Camacho, and J.A. Pérez, Influence of the Temperature on AA6061 Aluminum Alloy in a Hot Extrusion Process, Proc. Manuf., 2017, 13, p 327–334Google Scholar
  9. 9.
    K.N. Campo, C.T.W. Proni, and E.J. Zoqui, Influence of the Processing Route on the Microstructure of Aluminum alloy A356 for Thixoforming, Mater. Charact., 2013, 85, p 26–37CrossRefGoogle Scholar
  10. 10.
    S.C. Wang, N. Zhou, W.J. Qi, and K.H. Zheng, Microstructure and Mechanical Properties of A356 Aluminum Alloy Wheels Prepared by Thixo-Forging Combined with a Low Superheat Casting Process, Trans. Nonferrous Met. Soc., 2014, 24(7), p 2214–2219CrossRefGoogle Scholar
  11. 11.
    H.T. Zhou, S.X. Xu, W.D. Li et al., A Study of Automobile Bracket Formed by Casting-Forging Integrated Forming Technology, Mater. Des., 2015, 67, p 285–292CrossRefGoogle Scholar
  12. 12.
    Y. Liu, C. Geng, Q.Q. Lin et al., Study on Hot Deformation Behavior and Intrinsic Workability of 6063 Aluminum Alloys Using 3D Processing Map, J. Alloy. Compd., 2017, 713, p 121–221CrossRefGoogle Scholar
  13. 13.
    Y.C. Lin, S.C. Luo, L.X. Yin et al., Microstructural Evolution and High Temperature Flow Behaviors of a Homogenized Sr-Modified Al-Si-Mg Alloy, J. Alloy. Compd., 2018, 739, p 590–599CrossRefGoogle Scholar
  14. 14.
    N. Haghdadi, A. Zarei-Hanzaki, and H.R. Abedi, The Flow Behavior Modeling of Cast A356 Aluminum Alloy at Elevated Temperature Considering the Effect of Strain, Mater. Sci. Eng. A-Struct., 2012, 535, p 252–257CrossRefGoogle Scholar
  15. 15.
    Z.L. Liang and Q. Zhang, Quasi-Static Loading Responses and Constitutive Modeling of Al-Si-Mg Alloy, Metals, 2018, 838, p 1–11Google Scholar
  16. 16.
    Y.C. Lin, S.C. Luo, X.Y. Jiang et al., Hot Deformation Behavior of a Sr-Modified Al-Si-Mg Alloy: Constitutive Model and Processing Maps, Trans. Nonferrous Met. Soc. China, 2018, 28, p 592–603CrossRefGoogle Scholar
  17. 17.
    N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian et al., Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49, p 386–391CrossRefGoogle Scholar
  18. 18.
    Y.C. Lin and X.M. Chen, A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working, Mater. Des., 2011, 32, p 1733–1759CrossRefGoogle Scholar
  19. 19.
    J.Q. Tian, M. Zhan, S. Liu et al., A Modified Johnson-Cook Model for Tensile Flow Behaviors of 7050-T7451 Aluminum Alloy at High Strain Rates, Mater. Sci. Eng. A-Struct., 2015, 631, p 214–219CrossRefGoogle Scholar
  20. 20.
    R.Y. Lin, Y.U. Duan, L.S. Ma et al., Flow Behavior, Dynamic Recrystallization and Processing Map of Mg-20Pb-1.6Al-0.48B Alloy, J. Mater. Eng. Perform., 2017, 26, p 2439–2451CrossRefGoogle Scholar
  21. 21.
    N. Ravichandran and Y.V.R.K. Prasad, Dynamic Recrystallization During Hot Deformation of Aluminum: A Study using Processing Maps, Metall. Trans. A, 1991, 22(10), p 2339–2348CrossRefGoogle Scholar
  22. 22.
    P.S. Robi and U.S. Dixit, Application of Neural Networks in Generating Processing Map for Hot Working, J. Mater. Process. Technol., 2003, 142(1), p 289–294CrossRefGoogle Scholar
  23. 23.
    R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, Metall. Trans. A, 1981, 12A, p 1089–1097CrossRefGoogle Scholar
  24. 24.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu et al., Modeling of Dynamic Material Behavior in Hot Deformation-Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892CrossRefGoogle Scholar
  25. 25.
    Y. Liu, W. Xiong, Q. Yang et al., Constitutive Behavior and Processing Maps of T2 Pure Copper Deformed from 293 to 1073 K, J. Mater. Eng. Perform., 2018, 27(4), p 1812–1824CrossRefGoogle Scholar
  26. 26.
    G.X. Wang, L. Xu, Y. Wang et al., Processing Maps for Hot Working Behavior of a PM TiAl Alloy, J. Mater. Sci. Technol., 2011, 27(10), p 893–898CrossRefGoogle Scholar
  27. 27.
    K.T. Son, M.H. Kim, S.W. Kim et al., Evaluation of Hot Deformation Characteristics in Modified AA5052 Using Processing and Activation Energy Map Under Deformation Heating, J. Alloy. Compd., 2018, 740, p 96–108CrossRefGoogle Scholar
  28. 28.
    Y.H. Duan, L.S. Ma, H.R. Qi et al., Developed Constitutive Models, Processing Maps and Microstructural Evolution of Pb-Mg-10Al-0.5B Alloy, Mater. Charact., 2017, 129, p 353–366CrossRefGoogle Scholar
  29. 29.
    D.Y. Cai, L.Y. Xiong, W.C. Liu et al., Characterization of Hot Deformation Behavior of a Ni-Base Superalloy Using Processing Map, Mater. Des., 2009, 30(3), p 921–925CrossRefGoogle Scholar
  30. 30.
    H.E. Hu, X.Y. Wang, and L. Deng, High Temperature Deformation Behavior and Optimal Hot Processing Parameters of Al-Si Eutectic Alloy, Mater. Sci. Eng. A-Struct., 2013, 576, p 45–51CrossRefGoogle Scholar
  31. 31.
    S. Gangolu, A.G. Rao, I. Sabirov, B.P. Kashyap, N. Prabhu, and V.P. Deshmukh, Development of Constitutive Relationship and Processing Map for Al-6.65Si-0.44Mg Alloy and Its Composite with B4C Particulates, Mater. Sci. Eng. A-Struct., 2016, 655, p 256–264CrossRefGoogle Scholar
  32. 32.
    H.C. Liao, Y. Wu, K.X. Zhou, and J. Yang, Hot Deformation Behavior and Processing Map of Al-Mg-Si Alloys Containing Different Amount of Silicon Based on Gleebe-3500 Hot Compression Simulation, Mater. Des., 2015, 65, p 1091–1099CrossRefGoogle Scholar
  33. 33.
    N. Ravichandran and Y.V.R.K. Prasad, Dynamic Recrystallization During Hot Deformation of Aluminum: A Study Using Processing Maps, Metall. Trans. A, 1991, 22(10), p 2339–2348CrossRefGoogle Scholar
  34. 34.
    S.V.S. Narayana Murty and B. Nageswara Rao, On the Flow Localization Concepts in The processing Maps of Titanium Alloy Ti-24Al-20Nb, J. Mater. Process. Technol., 2000, 104, p 103–109CrossRefGoogle Scholar
  35. 35.
    X.W. Yang and W.Y. Li, Flow Behavior and Processing Maps of a Low-Carbon Steel During Hot Deformation, Metall. Mater. Trans. A, 2015, 46A, p 6052–6064CrossRefGoogle Scholar
  36. 36.
    S.K. Chaudhury and D. Apelian, Effects of Rapid Heating on Aging Characteristics of T6 Tempered Al-Si-Mg Alloys Using a Fluidized Bed, J. Mater. Sci., 2006, 41(14), p 4684–4690CrossRefGoogle Scholar
  37. 37.
    L.J. Colley. Microstructure-Property Models for Heat Treatment of A356 Aluminum Alloy (Ph.D. Thesisi). University of British Columbia, Vancouver, Canada, 2011Google Scholar
  38. 38.
    S.W. Youn and C.G. Kang, Characterization of Age-Hardening Behavior of Eutectic Region in Squeeze-Cast A356-T6 Alloy Using Nanoindenter and Atomic Force Microscope, Mater. Sci. Eng. A-Struct., 2006, 425, p 28–35CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations