Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 8, pp 5156–5164 | Cite as

A Study on Peripheral Grain Structure Evolution of an AA7050 Aluminum Alloy with a Laboratory-Scale Extrusion Setup

  • Yiwei SunEmail author
  • Xiaolong Bai
  • Daniel Klenosky
  • Kevin Trumble
  • David Johnson
Article
  • 105 Downloads

Abstract

A laboratory-scale hot extrusion setup was designed to investigate recrystallization and grain growth behavior of an AA7050 alloy during extrusion and subsequent heat treatments. Compared with industrial extrusion, the laboratory-scale process enabled rapid water quenching of extrudate with less delay so that the dynamic grain structure development was captured. After extrusion, static microstructure evolution in the extrudates was studied using salt bath annealing for 5 and 15 s at 490 °C and solutionization treatment for 1 h at 490 °C. The salt bath annealing was a simulation of the delay of press quenching in typical industrial extrusion practices. In the as-quenched extrudates, the peripheral region mainly exhibited continuous dynamic recrystallization and geometric dynamic recrystallization, whereas in the core region discontinuous dynamic recrystallization dominated. A <100> and <111> double fiber texture was identified in extrudates, and recrystallization behavior was found to be orientation dependent. The <100> oriented grains contained more sub-grain boundaries and better-defined sub-grains and had a higher tendency to fragment via continuous recrystallization, while the <111> oriented grains produced less sub-grain boundaries and did not recrystallize. Subsequent heat treatments resulted in static recrystallization and abnormal growth of the continuously recrystallized grains. Additionally, the effects of extrusion temperature (440, 480 and 520 °C) and punch speed (0.7, 1.4 and 2.1 mm/s) on grain structure were discussed. A revised grain structure evolution mechanism based on the observation of 7050 extrusion was proposed.

Keywords

7050 alloy extrusion grain growth recrystallization 

Notes

Acknowledgment

The authors gratefully acknowledge financial support on this research from Shandong Nanshan Aluminum Co. and Beijing Nanshan Institute of Aeronautical Materials. Materials for the project donated by Arconic Lafayette Operations are also acknowledged.

References

  1. 1.
    N.U. Deshpande, A.M. Gokhale, D.K. Denzer, and J. Liu, Relationship Between Fracture Toughness, Fracture Path, and Microstructure of 7050 Aluminum Alloy: Part I. Quantitative Characterization, Metall. Mater. Trans. A, 1998, 29(4), p 1191–1201CrossRefGoogle Scholar
  2. 2.
    D. Dumont, A. Deschamps, and Y. Brechet, A Model for Predicting Fracture Mode and Toughness in 7000 Series Aluminium Alloys, Acta Mater., 2004, 52(9), p 2529–2540CrossRefGoogle Scholar
  3. 3.
    T. Minoda and H. Yoshida, Effect of Grain Boundary Characteristics on Intergranular Corrosion Resistance of 6061 Aluminum Alloy Extrusion, Metall. Mater. Trans. A, 2002, 33(9), p 2891–2898CrossRefGoogle Scholar
  4. 4.
    K. Chen, H. Fang, Z. Zhang, X. Chen, and G. Liu, Effect of Yb, Cr and Zr Additions on Recrystallization and Corrosion Resistance of Al–Zn–Mg–Cu Alloys, Mater. Sci. Eng. A, 2008, 497(1), p 426–431CrossRefGoogle Scholar
  5. 5.
    W.H. Van Geertruyden, W.Z. Misiolek, and P.T. Wang, Grain Structure Evolution in a 6061 Aluminum Alloy During Hot Torsion, Mater. Sci. Eng. A, 2006, 419(1–2), p 105–114CrossRefGoogle Scholar
  6. 6.
    H. Hu, L. Zhen, B. Zhang, L. Yang, and J. Chen, Microstructure Characterization of 7050 Aluminum Alloy During Dynamic Recrystallization and Dynamic Recovery, Mater. Charact., 2008, 59(9), p 1185–1189CrossRefGoogle Scholar
  7. 7.
    J.D. Robson, Microstructural Evolution in Aluminium Alloy 7050 During Processing, Mater. Sci. Eng. A, 2004, 382(1), p 112–121CrossRefGoogle Scholar
  8. 8.
    M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An Investigation into the Hot Deformation Characteristics of 7075 Aluminum Alloy, Mater. Des., 2011, 32(4), p 2339–2344CrossRefGoogle Scholar
  9. 9.
    N. Jin, H. Zhang, Y. Han, W. Wu, and J. Chen, Hot Deformation Behavior of 7150 Aluminum Alloy During Compression at Elevated Temperature, Mater. Charact., 2009, 60(6), p 530–536CrossRefGoogle Scholar
  10. 10.
    R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. JuulJensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current Issues in Recrystallization: A Review, Mater. Sci. Eng. A, 1997, 238(2), p 219–274CrossRefGoogle Scholar
  11. 11.
    C. Poletti, M. Rodriguez-Hortalá, M. Hauser, and C. Sommitsch, Microstructure Development in Hot Deformed AA6082, Mater. Sci. Eng. A, 2011, 528(6), p 2423–2430CrossRefGoogle Scholar
  12. 12.
    A. Güzel, A. Jäger, F. Parvizian, H.G. Lambers, A.E. Tekkaya, B. Svendsen, and H.J. Maier, A New Method for Determining Dynamic Grain Structure Evolution During Hot Aluminum Extrusion, J. Mater. Process. Techol., 2012, 212(1), p 323–330CrossRefGoogle Scholar
  13. 13.
    A.R. Eivani, J. Zhou, and J. Duszczyk, Numerical Modeling of Subgrain Growth of Hot Extruded Al–4.5 Zn–1 Mg Alloy in the Presence of Nanosized Dispersoids, Comput. Mater. Sci., 2014, 86, p 9–16CrossRefGoogle Scholar
  14. 14.
    W. Libura and J. Zasadziński, The Influence of Strain Gradient on Material Structure During Extrusion of the AlCu4Mg Alloy, J. Mater. Process. Technol., 1992, 34(1-4), p 517–524CrossRefGoogle Scholar
  15. 15.
    S. Kikuchi, H. Yamazaki, and T. Otsuka, Peripheral-Recrystallized Structures Formed in Al-Zn-Mg-Cu-Zr Alloy Materials During Extrusion and Their Quenching Sensitivity, J. Mater. Process. Technol., 1993, 38(4), p 689–701CrossRefGoogle Scholar
  16. 16.
    W.H. Van Geertruyden, H.M. Browne, W.Z. Misiolek, and P.T. Wang, Evolution of Surface Recrystallization During Indirect Extrusion of 6XXX Aluminum Alloys, Metall. Mater. Trans. A, 2005, 36(4), p 1049–1056CrossRefGoogle Scholar
  17. 17.
    A.R. Eivani, J. Zhou, and J. Duszczyk, Mechanism of the Formation of Peripheral Coarse Grain Structure in Hot Extrusion of Al-4.5 Zn-1 Mg, Philos. Mag., 2016, 96(12), p 1188–1196CrossRefGoogle Scholar
  18. 18.
    M. Schikorra, L. Donati, L. Tomesani, and A.E. Tekkaya, Microstructure Analysis of Aluminum Extrusion: Grain Size Distribution in AA6060, AA6082 and AA7075 Alloys, J. Mech. Sci. Technol., 2007, 21(10), p 1445–14551CrossRefGoogle Scholar
  19. 19.
    T. Sheppard, Press Quenching of Aluminium Alloys, Mater. Sci. Technol., 1988, 4(7), p 635–643CrossRefGoogle Scholar
  20. 20.
    T. Sheppard, Chapter 3: Metallurgical Features Affecting the Extrusion of Aluminum Alloys, in: Extrusion of Aluminum Alloys (Springer , Berlin, 2013), pp. 81–86Google Scholar
  21. 21.
    T. Sheppard and R.P. Vierod, Effect of Thermomechanical Process on As-Extruded and Solution Soaked Structures of Al–Cu–Mn Alloys, Mater. Sci. Technol., 1987, 3(4), p 285–290CrossRefGoogle Scholar
  22. 22.
    T. Furu, R. Østhus, N. Telioui, R. Aagård, M. Bru, O.R. Myhr, Modeling the Effect of Mn on Extrudability, Mechanical Properties and Grain Structure of AA6082 Alloys, in Eleventh International Aluminum Extrusion Technology Seminar & Exposition (2016), pp. 567–590.Google Scholar
  23. 23.
    F.J. Humphreys, M. Hatherly, Chapter 9: Recrystallization of Two-Phase Alloys, in Recrystallization and Related Annealing Phenomena, (Elsevier, 2012), pp. 311-314Google Scholar
  24. 24.
    Y. Sun, D.R. Johnson, and K.P. Trumble, Effect of Zr on Recrystallization in a Directionally Solidified AA7050, Mater. Sci. Eng. A, 2017, 700, p 358–365CrossRefGoogle Scholar
  25. 25.
    F.J. Humphreys, M. Hatherly, Chapter 3: Deformation Textures, in Recrystallization and Related Annealing Phenomena (Elsevier, 2012), pp. 78–79Google Scholar
  26. 26.
    M. Somerday and F.J. Humphreys, Recrystallisation Behaviour of Supersaturated Al–Mn Alloys Part 2–Al–0.3 wt% Mn, Mater. Sci. Technol., 2003, 19(1), p 30–35CrossRefGoogle Scholar
  27. 27.
    X. Huang and N. Hansen, Grain Orientation Dependence of Microstructure in Aluminium Deformed in Tension, Scripta Mater., 1997, 37(1), p 1–7CrossRefGoogle Scholar
  28. 28.
    G. Winther and X. Huang, Dislocation Structures Part II, Slip System Dependence, Philos. Mag., 2007, 87(33), p 5215–5235CrossRefGoogle Scholar
  29. 29.
    Q. Liu, D.J. Jensen, and N. Hansen, Effect of Grain Orientation on Deformation Structure in Cold-Rolled Polycrystalline Aluminium, Acta Mater., 1998, 46(16), p 5819–5838CrossRefGoogle Scholar
  30. 30.
    C. Merriman, D. Field, and P. Trivedi, Orientation Dependence of Dislocation Structure Evolution During Cold Rolling of Aluminum, Mater. Sci. Eng. A, 2008, 494(1), p 28–35CrossRefGoogle Scholar
  31. 31.
    S. Gourdet and F. Montheillet, A Model of Continuous Dynamic Recrystallization, Acta Mater., 2003, 51(9), p 2685–2699CrossRefGoogle Scholar
  32. 32.
    M. Bauser, K. Siegert (eds.), Chapter 5: The Production of Extruded Semi-Finished Products from Metallic Materials, in Extrusion, (ASM International, 2006), p. 232Google Scholar
  33. 33.
    O. Reiso, Extrusion of AlMgSi Alloys, Mater. Forum, 2004, 28, p 32–46Google Scholar
  34. 34.
    F.J. Humphreys, M. Hatherly, Chapter 7: Recrystallization of Single-Phase Alloys, in Recrystallization and Related Annealing Phenomena, (Elsevier, 2012), pp. 228–229Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Yiwei Sun
    • 1
    • 2
    • 3
    Email author
  • Xiaolong Bai
    • 1
    • 2
  • Daniel Klenosky
    • 1
    • 2
  • Kevin Trumble
    • 1
    • 2
  • David Johnson
    • 1
    • 2
  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Purdue Center for Metal Casting ResearchPurdue UniversityWest LafayetteUSA
  3. 3.Department of Mechanical Engineering, Bourns HallUniversity of California RiversideRiversideUSA

Personalised recommendations