Effect of Rotational Speed on Microstructure and Mechanical Properties in Submerged Friction Stir Welding of ME20M Magnesium Alloy

  • Wenming Liu
  • Yifu ShenEmail author
  • Chao Guo
  • Ruiyang Ni
  • Yinfei Yan
  • Wentao Hou


Submerged friction stir welding of magnesium alloys has not been well investigated to date. ME20M is an important lightweight magnesium (Mg) alloy with enhanced yield strength and heat resistance that merits further research. In this paper, submerged friction stir welding of the ME20M Mg alloy was carried out using different parameters for the underwater cooling. Defect-free weld joints were produced, and the macrostructure, microstructure, tensile properties, and hardness were investigated. The results show that by increasing the rotational speed, the grain size of the weld nugget increased, the tensile strength of the joint decreased, and the microhardness of the different weld zones decreased. The finest obtained grain size was about 3.5 µm in the weld nugget at a rotational speed of 1100 rpm. The highest tensile strength achieved was 183.2 MPa, which was ~ 76.32% of the base metal. The highest and lowest hardness values of the weld joint were obtained at rotational speeds of 1100 and 1600 rpm, respectively, in the weld nugget and heat-affected zones.


ME20M magnesium alloy mechanical properties microstructure rotational speed submerged friction stir welding 



The study work of this paper is supported by the National Natural Science Foundation of China (Grant No. 51475232). This is a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).


  1. 1.
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties, Prog. Mater. Sci., 2008, 53(6), p 980–1023Google Scholar
  2. 2.
    Z. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39(3), p 642–658Google Scholar
  3. 3.
    Z.H. Chen, H.G. Yan, J.H. Chen, Y.J. Quan, H.M. Wang, and D. Chen, Magnesium Alloy, Chemical Industry Press, Beijing (in Chinese), 2004Google Scholar
  4. 4.
    K. Hantzsche, J. Wendt, K.U. Kainer, J. Bohlen, and D. Letzig, Mg Sheet: The Effect of Process Parameters and Alloy Composition on Texture and Mechanical Properties, JOM, 2009, 61(8), p 38–42Google Scholar
  5. 5.
    T. Al-Samman and X. Li, Sheet Texture Modification in Magnesium-Based Alloys by Selective Rare Earth Alloying, Mater. Sci. Eng. A, 2011, 528(10), p 3809–3822Google Scholar
  6. 6.
    Y. Chino, X. Huang, K. Suzuki, K. Sassa, and M. Mabuchi, Influence of Zn Concentration on Stretch Formability at Room Temperature of Mg-Zn-Ce Alloy, Mater. Sci. Eng. A, 2010, 528(2), p 566–572Google Scholar
  7. 7.
    J. Min and J. Lin, An elastic Behavior and Phenomenological Modeling of mg ZEK100-O Alloy Sheet Under Cyclic Tensile Loading–Unloading, Mater. Sci. Eng. A, 2013, 561(3), p 174–182Google Scholar
  8. 8.
    J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, and S.R. Agnew, The Texture and Anisotropy of Magnesium-Zinc-Rare Earth Alloy Sheets, Acta Mater., 2007, 55(6), p 2101–2112Google Scholar
  9. 9.
    H. Xu, J. Liu, and S. Xie, Magnesium Alloy Fabrication and Processing Technology, Metallurgical Industry Press, Beijing (in Chinese), 2007Google Scholar
  10. 10.
    S. Wang and D. Zhang, Microstructure and Mechanical Properties of Frictional Stirring Processed (FSP) MB8 Magnesium Alloy, SCNA, 2011, 31(1), p 83–86Google Scholar
  11. 11.
    W. Xu, Friction Stir Welding of Magnesium Alloy MB8, J. Mater. Eng., 2002, 8, p 35–36Google Scholar
  12. 12.
    L. Xing, L. Ke, D. Sun, and X. Zhou, Friction Stir Welding of MB8 Magnesium Alloy Sheet, Trans. China Weld. Inst., 2001, 22(6), p 18–20Google Scholar
  13. 13.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1), p 1–78Google Scholar
  14. 14.
    C. Fang, D. Zhang, and Y. Li, Microstructures and Tensile Properties of Submerged Friction Stir Processed AZ91 Magnesium Alloy, J. Magn. Alloy, 2015, 3, p 203–209Google Scholar
  15. 15.
    B. Darras and E. Kishta, Submerged Friction Stir Processing of AZ31 Magnesium Alloy, Mater. Des., 2013, 47(9), p 133–137Google Scholar
  16. 16.
    X. Luo, G. Cao, W. Zhang, C. Qiu, and D. Zhang, Ductility Improvement of an AZ61 Magnesium Alloy through Two-Pass Submerged Friction Stir Processing, Materials, 2017, 10(3), p p253Google Scholar
  17. 17.
    J.P. Ramulu, R.G. Narayanan, S.V. Kailas et al., Internal Defect and Process Parameter Analysis during Friction Stir Welding of Al 6061 Sheets, Int. J. Adv. Manuf. Technol., 2013, 65(9–12), p 1515–1528Google Scholar
  18. 18.
    P. Vilaça and W. Thomas, Friction Stir Welding Technology, Sci. Technol. Rev., 2012, 8, p 85–124Google Scholar
  19. 19.
    J. Rasti, Study of the Welding Parameters Effect on the Tunnel Void Area during Friction Stir Welding of 1060 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2018, 97, p 2221–2230Google Scholar
  20. 20.
    T.G. Santos, R.M. Miranda, and P. Vilaça, Friction Stir Welding Assisted by Electrical Joule Effect, J. Mater. Process. Technol., 2014, 10, p 2127–2133Google Scholar
  21. 21.
    Y. Huang, Y. Wang, X. Meng et al., Dynamic Recrystallization and Mechanical Properties of Friction Stir Processed Mg-Zn-Y-Zr Alloys, J. Mater. Process. Technol., 2017, 249, p 331–338Google Scholar
  22. 22.
    L. Commin, M. Dumont, J.E. Masse, and L. Barrallier, Friction Stir Welding of AZ31 Magnesium Alloy Rolled Sheets: Influence of Processing Parameters, Acta Mater., 2009, 57(2), p 326–334Google Scholar
  23. 23.
    V.V. Patel, V.J. Badheka, and A. Kumar, Effect of Velocity Index on Grain Size of Friction Stir Processed Al-Zn-Mg-Cu Alloy, Procedia Technol., 2016, 23, p 537–542Google Scholar
  24. 24.
    M.R. Barnett, A Rationale for the Strong Dependence of Mechanical Twinning on Grain Size, Scr. Mater., 2008, 59(7), p 696–698Google Scholar
  25. 25.
    H.T. Serindag, B.G. Kiral, H.T. Serindag, and B.G. Kiral, Friction Stir Welding of AZ31 Magnesium Alloys—A Numerical and Experimental Study, Lat. Am. J. Solids Struct., 2016, 14(1), p 113–130Google Scholar
  26. 26.
    S.S. Kumar, N. Murugan, K.K. Ramachandran, Effect of Friction Stir Welding on Mechanical and Microstructural Properties of AISI 316L Stainless Steel Butt Joints. Weld. World, 2019, 63, p 137–150Google Scholar
  27. 27.
    P. Schempp, C.E. Cross, A. Pittner, and M. Rethmeier, Influence of Solute Content and Solidification Parameters on Grain Ref inement of Aluminum Weld Metal, Metall. Mater. Trans. A, 2013, 44(7), p 3198–3210Google Scholar
  28. 28.
    G. Sharma and D.K. Dwivedi, Study on Microstructure and Mechanical Properties of Dissimilar Steel Joint Developed Using Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2016, 88(5–8), p 1–9Google Scholar
  29. 29.
    Z.L. Hu, M.L. Dai, and Q. Pang, Influence of Welding Combined Plastic Forming on Microstructure Stability and Mechanical Properties of Friction Stir-Welded Al-Cu Alloy, J. Mater. Eng. Perform., 2018, 27, p 4036–4042Google Scholar
  30. 30.
    H. Zhang, H. Liu, and L. Yu, Effect of Water Cooling on the Performances of Friction Stir Welding Heat-Affected Zone, J. Mater. Eng. Perform., 2012, 21(7), p 1182–1187Google Scholar
  31. 31.
    G. Ran, J.E. Zhou, and Q.G. Wang, Precipitates and Tensile Fracture Mechanism in a Sand Cast A356 Aluminum Alloy, J. Mater. Process. Technol., 2008, 207(1), p 46–52Google Scholar
  32. 32.
    M. Lentz, J. Nissen, C. Fahrenson, S.C. Vogel, and W. Reimers, Macro- and Microtexture Evolution of an Extruded Mg-Mn-Ce Alloy during Annealing, Mater. Sci. Eng. A, 2016, 655, p 17–26Google Scholar
  33. 33.
    P. Carlone, A. Astarita, F. Rubino, and N. Pasquino, Microstructural Aspects in FSW and TIG Welding of Cast ZE41A Magnesium Alloy, Metall. Mater. Trans. B, 2016, 47(2), p 1–7Google Scholar
  34. 34.
    F. Liu, L. Fu, and H. Chen, Microstructure Evolution and Mechanical Properties of High-Speed Friction Stir Welded Aluminum Alloy Thin Plate Joints, J. Mater. Eng. Perform., 2018, 27(7), p 3590–3599Google Scholar
  35. 35.
    L. Zhou, H.J. Liu, and Q.W. Liu, Effect of Rotation Speed on Microstructure and Mechanical Properties of Ti-6Al-4 V Friction Stir Welded Joints, Mater. Des. (1980-2015), 2010, 31(5), p 2631–2636Google Scholar
  36. 36.
    S. Li, Y. Chen, X. Zhou, J. Kang, Y. Huang, and H. Deng, High-Strength Titanium Alloy/Steel Butt Joint Produced Via Friction Stir Welding, Mater. Lett., 2019, 234, p 155–158Google Scholar
  37. 37.
    L. Commin, M. Dumont, R. Rotinat, F. Pierron, J.E. Masse, and L. Barrallier, Influence of the Microstructural Changes and Induced Residual Stresses on Tensile Properties of Wrought Magnesium Alloy Friction Stir Welds, Mater. Sci. Eng. A, 2012, 551(31), p 288–292Google Scholar
  38. 38.
    Y. Wang, Y. Huang, X. Meng, L. Wan, and J. Feng, Microstructural Evolution and Mechanical Properties of Mg-Zn-Y-Zr Alloy during Friction Stir Processing, J. Alloys Compd., 2017, 696, p 875–883Google Scholar
  39. 39.
    R.D. Fu, Z.Q. Sun, R.C. Sun, Y. Li, H.J. Liu, and L. Liu, Improvement of Weld Temperature Distribution and Mechanical Properties of 7050 Aluminum Alloy Butt Joints by Submerged Friction Stir Welding, Mater. Des., 2011, 32(10), p 4825–4831Google Scholar
  40. 40.
    S. Mironov, T. Onuma, Y.S. Sato, S. Yoneyama, and H. Kokawa, Tensile Behavior of Friction-Stir Welded AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2017, 679, p 272–281Google Scholar
  41. 41.
    W.H. Hartt and R.E. Reed-Hill, Internal Deformation and Fracture Of Second-Order 1011-1012 Twins in Magnesium, Trans. Metall. Soc. AIME, 1968, 242, p 1127–1132Google Scholar
  42. 42.
    D. Ando, J. Koike, and Y. Sutou, Relationship Between Deformation Twinning and Surface Step Formation in AZ31 Magnesium Alloys, Acta Mater., 2010, 58(13), p 4316–4324Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Wenming Liu
    • 1
  • Yifu Shen
    • 1
    Email author
  • Chao Guo
    • 1
  • Ruiyang Ni
    • 1
  • Yinfei Yan
    • 1
  • Wentao Hou
    • 1
  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and Astronautics (NUAA)NanjingPeople’s Republic of China

Personalised recommendations