Advertisement

Study of Thermomechanical Behavior of Zirconium-0.3 Tin Alloy

  • S. K. Jha
  • Saurabh DixitEmail author
  • Dinesh Srivastava
Article
  • 28 Downloads

Abstract

Zirconium-based alloys are used in the manufacturing of nuclear fuel tubes. These tubes need to be clad with zirconium-tin (Zr-0.3 wt.% Sn) alloy to enhance the lives of tubes. Manufacturing of such clad tubes is a challenging task, due to work hardening and dynamic softening phenomenon. In this study, hot deformation behavior of Zr-0.3Sn alloy is investigated at different temperatures and strain rates. It is found that fully recrystallized microstructure can be obtained by working at around 900 °C and high strain rate of 10 s−1. Further, constitutive equations are developed for the entire domain of deformation range and fitted into standard FEM-based simulation model for extrusion. The simulation results are validated with experimental data. The difference in flow stresses values obtained from numerical and experimental methods was around 14%.

Keywords

hot deformation processing maps Zr-Sn alloy 

Notes

References

  1. 1.
    D.O. Northwood, The Development and Applications of Zirconium Alloys, Mater. Des., 1985, 6, p 58–70.  https://doi.org/10.1016/0261-3069(85)90165-7 CrossRefGoogle Scholar
  2. 2.
    L. Hallstadius, S. Johnson, and E. Lahoda, Cladding for high Performance Fuel, Prog. Nucl. Energy, 2012, 57, p 71–76.  https://doi.org/10.1016/j.pnucene.2011.10.008 CrossRefGoogle Scholar
  3. 3.
    R. Krishnan and M. Asundi, Zirconium Alloys in Nuclear Technology, Proc Indian Acad SciEngg Sci., 1981, 4, p 41–56Google Scholar
  4. 4.
    L.F.P. Van Swam and C.M. Eucken, ASTM Committee B-10 on Reactive and Refractory Metals and Alloys, International Atomic Energy Agency, eds., Zirconium in the nuclear industry: eighth international symposium, ASTM, Philadelphia, PA, 1989.Google Scholar
  5. 5.
    K. Edsinger and K.L. Murty, LWR Pellet-Cladding Interactions: Materials Solutions to SCC, JOM, 2001, 53, p 9–13.  https://doi.org/10.1007/s11837-001-0079-7 CrossRefGoogle Scholar
  6. 6.
    B.A. Cheadle, C.E. Ells, and W. Evans, The Development of Texture in Zirconium Alloy Tubes, J. Nucl. Mater., 1967, 23, p 199–208.  https://doi.org/10.1016/0022-3115(67)90065-7 CrossRefGoogle Scholar
  7. 7.
    Z. Chen, K. Ikeda, T. Murakami, T. Takeda, and J.-X. Xie, Fabrication of Composite Pipes by Multi-Billet Extrusion Technique, J. Mater. Process. Technol., 2003, 137, p 10–16.  https://doi.org/10.1016/S0924-0136(02)01052-X CrossRefGoogle Scholar
  8. 8.
    H. Gegel, in Experimental Verification of Process Models (1983).Google Scholar
  9. 9.
    Y.V.R.K. Prasad, Author’s Reply: Dynamic Materials Model: Basis and Principles, Metall. Mater. Trans. A, 1996, 27, p 235–236.  https://doi.org/10.1007/BF02647765 CrossRefGoogle Scholar
  10. 10.
    Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15, p 1883–1892.  https://doi.org/10.1007/BF02664902 CrossRefGoogle Scholar
  11. 11.
    H. Sun, Y. Zhang, A.A. Volinsky, B. Wang, B. Tian, K. Song, Z. Chai, and Y. Liu, Effects of Ag Addition on Hot Deformation Behavior of Cu-Ni-Si Alloys: Effects of Ag Addition on Hot Deformation Behavior…, Adv. Eng. Mater., 2017, 19, p 1600607.  https://doi.org/10.1002/adem.201600607 CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, Z. Chai, Y. Liu, and K. Song, Small Y Addition Effects on Hot Deformation Behavior of Copper-Matrix Alloys, Adv. Eng. Mater., 2017, 19, p 1700197.  https://doi.org/10.1002/adem.201700197 CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, H. Sun, A.A. Volinsky, B. Wang, B. Tian, Y. Liu, and K. Song, Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy, J. Mater. Eng. Perform., 2018, 27, p 728–738.  https://doi.org/10.1007/s11665-018-3168-2 CrossRefGoogle Scholar
  14. 14.
    Y.V.R.K. Prasad and T. Seshacharyulu, Modelling of Hot Deformation for Microstructural Control, Int. Mater. Rev., 1998, 43, p 243–258.  https://doi.org/10.1179/imr.1998.43.6.243 CrossRefGoogle Scholar
  15. 15.
    F. Montheillet, J.J. Jonas, and K.W. Neale, Modeling of Dynamic Material Behavior: A Critical Evaluation of the Dissipator Power Co-content Approach, Metall. Mater. Trans. A, 1996, 27, p 232–235.  https://doi.org/10.1007/BF02647764 CrossRefGoogle Scholar
  16. 16.
    S. Ghosh, Interpretation of Microstructural Evolution Using Dynamic Materials Modeling, Metall. Mater. Trans. A., 2000, 31, p 2973–2974.  https://doi.org/10.1007/BF02830342 CrossRefGoogle Scholar
  17. 17.
    S. Ghosh, Interpretation of Flow Instability Using Dynamic Material Modeling, Metall. Mater. Trans. A., 2002, 33, p 1569–1572.  https://doi.org/10.1007/s11661-002-0081-x CrossRefGoogle Scholar
  18. 18.
    Y.C. Lin, Y.-C. Xia, X.-M. Chen, and M.-S. Chen, Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy Over a Wide Range of Temperature and Strain Rate, Comput. Mater. Sci., 2010, 50, p 227–233.  https://doi.org/10.1016/j.commatsci.2010.08.003 CrossRefGoogle Scholar
  19. 19.
    J.L. Derep, S. Ibrahim, R. Rouby, and G. Fantozzi, Deformation Behaviour of Zircaloy-4 Between 77 and 900 K, Acta Metall., 1980, 28, p 607–619.  https://doi.org/10.1016/0001-6160(80)90127-3 CrossRefGoogle Scholar
  20. 20.
    D.-X. Wen, Y.C. Lin, H.-B. Li, X.-M. Chen, J. Deng, and L.-T. Li, Hot Deformation Behavior and Processing Map of a Typical Ni-Based Superalloy, Mater. Sci. Eng. A., 2014, 591, p 183–192.  https://doi.org/10.1016/j.msea.2013.09.049 CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, B. Tian, A.A. Volinsky, X. Chen, H. Sun, Z. Chai, P. Liu, and Y. Liu, Dynamic Recrystallization Model of the Cu-Cr-Zr-Ag Alloy Under Hot Deformation, J. Mater. Res., 2016, 31, p 1275–1285.  https://doi.org/10.1557/jmr.2016.140 CrossRefGoogle Scholar
  22. 22.
    J.K. Chakravartty, G.K. Dey, S. Banerjee, and Y.V.R.K. Prasad, Characterization of Hot Deformation Behaviour of Zr□2.5Nb□0.5Cu Using Processing Maps, J. Nucl. Mater. 218 (1995) 247–255.  https://doi.org/10.1016/0022-3115(94)00379-3.
  23. 23.
    J.K. Chakravartty, Y.V.R.K. Prasad, and M.K. Asundi, Processing Map for Hot Working of Alpha-Zirconium, Metall. Trans. A., 1991, 22, p 829–836.  https://doi.org/10.1007/BF02658992 CrossRefGoogle Scholar
  24. 24.
    Y.B. Tan, L.H. Yang, C. Tian, R.P. Liu, X.Y. Zhang, and W.C. Liu, Hot Deformation Behavior of ZrTiAlV Alloy with a Coarse Grain Structure in the β Phase Field, Mater. Sci. Eng. A., 2013, 577, p 218–224.  https://doi.org/10.1016/j.msea.2013.04.056 CrossRefGoogle Scholar
  25. 25.
    S.K. Singh, K. Chattopadhyay, and P. Dutta, High-Temperature Workability of Thixocast A356 Aluminum Alloy, Metall. Mater. Trans. A., 2015, 46, p 3248–3259.  https://doi.org/10.1007/s11661-015-2855-y CrossRefGoogle Scholar
  26. 26.
    B.K. Raghunath, K. Raghukandan, R. Karthikeyan, K. Palanikumar, U.T.S. Pillai, and R.A. Gandhi, Flow Stress Modeling of AZ91 Magnesium Alloys at Elevated Temperature, J. Alloys Compd., 2011, 509, p 4992–4998.  https://doi.org/10.1016/j.jallcom.2011.01.182 CrossRefGoogle Scholar
  27. 27.
    J.K. Chakravartty, S. Banerjee, Y.V.R.K. Prasad, and M.K. Asundi, Hot-Working Characteristics of Zircaloy-2 in the Temperature Range of 650-950 °C, J. Nucl. Mater., 1992, 187, p 260–271.  https://doi.org/10.1016/0022-3115(92)90506-G CrossRefGoogle Scholar
  28. 28.
    R. Kapoor and J.K. Chakravartty, Characterization of Hot Deformation Behaviour of Zr-2.5Nb in β phase, J. Nucl. Mater. 306 (2002) 126–133.  https://doi.org/10.1016/s0022-3115(02)01290-4.
  29. 29.
    J.K. Chakravartty, R. Kapoor, S. Banerjee, and Y.V.R.K. Prasad, Characterization of Hot Deformation Behavior of Zr-1Nb-1Sn Alloy, J. Nucl. Mater., 2007, 362, p 75–86.  https://doi.org/10.1016/j.jnucmat.2006.11.007 CrossRefGoogle Scholar
  30. 30.
    S.K. Singh, K. Chattopadhyay, G. Phanikumar, and P. Dutta, Experimental and Numerical Studies on Friction Welding of Thixocast A356 Aluminum Alloy, Acta Mater., 2014, 73, p 177–185.  https://doi.org/10.1016/j.actamat.2014.04.019 CrossRefGoogle Scholar
  31. 31.
    J. Chakravartty, Y. Prasad, and M. Asundi, Processing Map and Hot Working Characteristics of Zircaloy-2, in: C. Eucken, A. Garde (Eds.), Zircon. Nucl. Ind. Ninth Int. Symp., ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1991: pp. 48-48–14.  https://doi.org/10.1520/stp25498s.
  32. 32.
    K.V.M. Krishna, S.K. Sahoo, I. Samajdar, S. Neogy, R. Tewari, D. Srivastava, G.K. Dey, G.H. Das, N. Saibaba, and S. Banarjee, Microstructural and Textural Developments During Zircaloy-4 Fuel Tube Fabrication, J. Nucl. Mater., 2008, 383, p 78–85.  https://doi.org/10.1016/j.jnucmat.2008.08.050 CrossRefGoogle Scholar
  33. 33.
    S.K. Jha, S. Dixit, K. Chetan, K. Vaibhaw, and D. Srivastava, Co-extrusion of Zircaloy-2 and Zr-Sn Alloy for Double Clad Tube Manufacturing: Numerical Simulation and Experimental Validation, J. Manuf. Process., 2019, 39, p 18–25.  https://doi.org/10.1016/j.jmapro.2019.01.048 CrossRefGoogle Scholar
  34. 34.
    F. Ren, J. Chen, and F. Chen, Constitutive Modeling of Hot Deformation Behavior of X20Cr13 Martensitic Stainless Steel with Strain Effect, Trans. Nonferrous Met. Soc. China., 2014, 24, p 1407–1413.  https://doi.org/10.1016/S1003-6326(14)63206-4 CrossRefGoogle Scholar
  35. 35.
    W. Li, H. Li, Z. Wang, and Z. Zheng, Constitutive Equations for High Temperature Flow Stress Prediction of Al-14Cu-7Ce Alloy, Mater. Sci. Eng. A., 2011, 528, p 4098–4103.  https://doi.org/10.1016/j.msea.2011.01.076 CrossRefGoogle Scholar
  36. 36.
    L. Chen, G. Zhao, J. Yu, W. Zhang, and T. Wu, Analysis and Porthole Die Design for a Multi-Hole Extrusion Process of a Hollow, Thin-Walled Aluminum Profile, Int. J. Adv. Manuf. Technol., 2014, 74, p 383–392.  https://doi.org/10.1007/s00170-014-6003-4 CrossRefGoogle Scholar
  37. 37.
    C. Zhang, G. Zhao, H. Chen, Y. Guan, and F. Kou, Numerical Simulation and Metal Flow Analysis of Hot Extrusion Process for a Complex Hollow Aluminum Profile, Int. J. Adv. Manuf. Technol., 2012, 60, p 101–110.  https://doi.org/10.1007/s00170-011-3609-7 CrossRefGoogle Scholar
  38. 38.
    A. Farjad Bastani, T. Aukrust, and S. Brandal, Optimisation of Flow Balance and Isothermal Extrusion of Aluminium Using Finite-Element Simulations, J. Mater. Process. Technol. 211 (2011) 650–667.  https://doi.org/10.1016/j.jmatprotec.2010.11.021.
  39. 39.
    F. Parvizian, T. Kayser, C. Hortig, and B. Svendsen, Thermomechanical Modeling and Simulation of Aluminum Alloy Behavior During Extrusion and Cooling, J. Mater. Process. Technol., 2009, 209, p 876–883.  https://doi.org/10.1016/j.jmatprotec.2008.02.076 CrossRefGoogle Scholar
  40. 40.
    S.K. Jha, N. Keskar, K.I. Vishnu Narayan, K.V. Mani Krishna, D. Srivastava, G.K. Dey, and N. Saibaba, Microstructural and Textural Evolution During Hot Deformation of Dilute Zr-Sn alloy, J. Nucl. Mater. 482 (2016) 12–18.  https://doi.org/10.1016/j.jnucmat.2016.09.028.
  41. 41.
    L. Saintoyant, L. Legras, and Y. Bréchet, Effect of an Applied Stress on the Recrystallization Mechanisms of a Zirconium Alloy, Scr. Mater., 2011, 64, p 418–421.  https://doi.org/10.1016/j.scriptamat.2010.11.003 CrossRefGoogle Scholar
  42. 42.
    M.E. Kassner, M.T. Perez Prado, T.A. Hayes, L. Jiang, S.R. Barrabes, and I.F. Lee, Elevated Temperature Deformation of Zr to Large Strains, J. Mater. Sci. 48 (2013) 4492–4500.  https://doi.org/10.1007/s10853-012-7060-4.
  43. 43.
    C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32CrossRefGoogle Scholar
  44. 44.
    S.S. Zhou, K.K. Deng, J.C. Li, K.B. Nie, F.J. Xu, H.F. Zhou, and J.F. Fan, Hot Deformation Behavior and Workability Characteristics of Bimodal Size SiCp/AZ91 Magnesium Matrix Composite with Processing Map, Mater. Des., 2014, 64, p 177–184.  https://doi.org/10.1016/j.matdes.2014.07.039 CrossRefGoogle Scholar
  45. 45.
    Y. Sun, Z. Wan, L. Hu, and J. Ren, Characterization of Hot Processing Parameters of Powder Metallurgy TiAl-Based Alloy Based on the Activation Energy Map and Processing Map, Mater. Des., 2015, 86, p 922–932.  https://doi.org/10.1016/j.matdes.2015.07.140 CrossRefGoogle Scholar
  46. 46.
    J. Li, F. Li, and J. Cai, Constitutive Model Prediction and Flow Behavior Considering Strain Response in the Thermal Processing for the TA15 Titanium Alloy, Materials., 2018, 11, p 1985.  https://doi.org/10.3390/ma11101985 CrossRefGoogle Scholar
  47. 47.
    A. Cingara and H.J. McQueen, New Formula for Calculating Flow Curves from High Temperature Constitutive Data for 300 Austenitic Steels, J. Mater. Process. Technol., 1992, 36, p 31–42.  https://doi.org/10.1016/0924-0136(92)90236-L CrossRefGoogle Scholar
  48. 48.
    D. Samantaray, S. Mandal, and A.K. Bhaduri, Constitutive Analysis to Predict High-Temperature Flow Stress in Modified 9Cr-1Mo (P91) Steel, Mater. Des., 2010, 31, p 981–984.  https://doi.org/10.1016/j.matdes.2009.08.012 CrossRefGoogle Scholar
  49. 49.
    H.L. Gegel, J.C. Malas, S.M. Doraievelu, and V.A. Shende, Metals Handbook, Vol. 14 (American Society for Metals, Metals Park, Ohio 1987), n.d.Google Scholar
  50. 50.
    J.L.F. Aymone, E. Bittencourt, and G.J. Creus, Simulation of 3D Metal-Forming Using an Arbitrary Lagrangian-Eulerian Finite Element Method, J. Mater. Process. Technol., 2001, 110, p 218–232.  https://doi.org/10.1016/S0924-0136(00)00886-4 CrossRefGoogle Scholar
  51. 51.
    C. Zhang, G. Zhao, Z. Chen, H. Chen, and F. Kou, Effect of Extrusion Stem Speed on Extrusion Process for a Hollow Aluminum Profile, Mater. Sci. Eng. B., 2012, 177, p 1691–1697.  https://doi.org/10.1016/j.mseb.2011.09.041 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • S. K. Jha
    • 1
    • 2
    • 3
  • Saurabh Dixit
    • 2
    Email author
  • Dinesh Srivastava
    • 1
    • 3
  1. 1.Homi Bhabha National InstituteMumbaiIndia
  2. 2.Mishra Dhatu Nigam Ltd. (MIDHANI)HyderabadIndia
  3. 3.Nuclear Fuel ComplexHyderabadIndia

Personalised recommendations