Advertisement

Comparison of Experimental Measurements of Thermal Conductivity of Fe2O3 Nanofluids Against Standard Theoretical Models and Artificial Neural Network Approach

  • Ravi AgarwalEmail author
  • Kamalesh Verma
  • Narendra Kumar Agrawal
  • Ramvir Singh
Article
  • 35 Downloads

Abstract

In the present work, the practicability of Fe2O3 nanofluids for heat transfer applications has been examined. Nanofluids performance, in terms of modulation of thermal conductivity, has been investigated with increasing concentration of Fe2O3 nanoparticles in water and ethylene glycol base fluids at 10, 20, 30, 40, 50, 60 and 70 °C. Fe2O3 nanoparticles have been synthesized using the wet chemical method and characterized using TEM, SEM, XRD and UV–Vis. The characterization results revealed a face-centered cubic structure having alpha phase and particle size in the range of 40-55 nm for the synthesized Fe2O3 nanoparticles. Thermal conductivity measurement results show increases in thermal conductivity with the increase in concentration and temperature of nanofluids. 16.45 and 19.76% enhancement in thermal conductivity have been observed for Fe2O3–water and Fe2O3–ethylene glycol nanofluids of 2 vol.% at 70 °C compared to water and ethylene glycol base fluids at 10 °C, respectively. Results of the ANN approach are in good agreement with experimental results, and H–C model gives better predictions compared to other standard models. The study gives clear insights into improved heat transfer performance by material engineering.

Keywords

heat transfer modulation nanofluids neural network thermal measurement thermophysical properties 

Notes

Acknowledgments

Research Associateship by Council of Scientific and Industrial Research (CSIR) to Ravi Agarwal and Senior Research Fellowship by University Grant Commission (conducted by Council of Scientific and Industrial Research) to Kamalesh Verma are gratefully acknowledged. Authors are also thankful to the UR-DBT-IPLS (BUILDER) of Centre for Converging Technologies, University of Rajasthan, for allowing using their facilities. KD2 Thermal Properties Analyzer provided by Dr. R. K. Duchaniya (Department of Metallurgical and Material Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, Rajasthan) is also gratefully acknowledged. We thank Keiron O’Shea from Aberystwyth University, UK, for improving the language of the manuscript.

References

  1. 1.
    T.K. Hong, H.S. Yang, and C.J. Choi, Study of the Enhanced Thermal Conductivity of Fe Nanofluids, J. Appl. Phys., 2005, 97(6), p 1–4Google Scholar
  2. 2.
    K. Hong, T.K. Hong, and H.S. Yang, Thermal Conductivity of Fe Nanofluids Depending on the Cluster Size of Nanoparticles, Appl. Phys. Lett., 2006, 88(3), p 31901Google Scholar
  3. 3.
    H.E. Patel, S.K. Das, T. Sundararagan, A.S. Nair, B. Geoge, and T. Pradeep, Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticles Based Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects, Appl. Phys. Lett., 2003, 83, p 2931–2933Google Scholar
  4. 4.
    J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, and L.J. Thompson, Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles, Appl. Phys. Lett., 2001, 78(6), p 718–720Google Scholar
  5. 5.
    X. Wang, X. Xu, and S.U.S. Choi, Thermal Conductivity of Nanoparticle-Fluid Mixture, J. Thermophys. Heat Transf., 1999, 13(4), p 474–480Google Scholar
  6. 6.
    H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of 7-Al2O3, SiO2, and TiO2 Ultra-Fine Particles), Netsu Bus-Sei (Japan), 1993, 7(4), p 227–233Google Scholar
  7. 7.
    S. Lee, S.U.S. Choi, S. Li, and J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf., 1999, 121, p 280–289Google Scholar
  8. 8.
    S.M.S. Murshed, K.C. Leong, and C. Yang, Enhanced Thermal Conductivity of TiO2—Water Based Nanofluids, Int. J. Therm. Sci., 2005, 44(4), p 367–373Google Scholar
  9. 9.
    S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 1991, 354(6348), p 56–57Google Scholar
  10. 10.
    M.S. Liu, M. Ching, L. Cheng, I.T. Huang, and C.C. Wang, Enhancement of Thermal Conductivity with Carbon Nanotube for Nanofluids, Int. Commun. Heat Mass, 2005, 32(9), p 1202–1210Google Scholar
  11. 11.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, 3 rd ed, Vol 435, Claredon Press, Oxford, 1904Google Scholar
  12. 12.
    W. Yu and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids, a Renovated Maxwell Model, J. Nanopart. Res., 2003, 5, p 167–171Google Scholar
  13. 13.
    D.A.G. Bruggeman, Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen I. Dielektrizitatskonstanten and Leitfanigkeitender Mischkorper aus isotropen Substanzen, Ann. Phys., 1935, 24, p 636–679Google Scholar
  14. 14.
    R.L. Hamilton and O.K. Crosser, Thermal Conductivity of Heterogeneous Two Component Systems, Ind. Eng. Chem. Fundam., 1962, 1(3), p 187–191Google Scholar
  15. 15.
    K. Verma, S. Kumar, A. Upadhyay, and R. Singh, Prediction of Thermal Conductivity of Nanofluids Containing Metal Oxide Nanoparticles, Adv. Sci. Eng. Med., 2015, 7, p 378–384Google Scholar
  16. 16.
    Y. Xuan, Q. Li, and W. Hu, Aggregation Structure and Thermal Conductivity of Nanofluids, AIChE J., 2003, 49, p 1038–1043Google Scholar
  17. 17.
    J. Koo and C. Kleinstreuer, A New Thermal Conductivity Model for Nanofluids, J. Nanopart. Res., 2004, 6, p 577–588Google Scholar
  18. 18.
    K. Verma, M. Dabas, A. Upadhyay, and R. Singh, Effective Thermal Conductivity of Lithium Multipurpose Grease Filled with Metal Particles, J. Reinf. Plast. Compos., 2014, 33(19), p 1794–1801Google Scholar
  19. 19.
    H. Kurt and M. Kayfeci, Prediction of Thermal Conductivity of Ethylene Glycol-Water Solutions by Using Artificial Neural Networks, Appl. Energy, 2006, 86, p 2244–2248Google Scholar
  20. 20.
    J.Z. Liang and G.S. Liu, A New Heat Transfer Model of Inorganic Particulate-Filled Polymer Composites, J. Mater. Sci., 2009, 44, p 4715–4720Google Scholar
  21. 21.
    R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, and R. Singh, Synthesis, Characterization, Thermal Conductivity and Sensitivity of CuO Nanofluids, Appl. Therm. Eng., 2016, 102, p 1024–1036Google Scholar
  22. 22.
    G. Huminic, A. Huminic, F. Dumitrache, C. Fleaca, and I. Morjan, Experimental Study of Thermo-Physical Properties of Nanofluids Based on γ-Fe2O3 Nanoparticles for Heat Transfer Applications, Heat Transfer Eng., 2017, 38(17), p 1496–1505Google Scholar
  23. 23.
    R. Agarwal, K. Verma, N.K. Agrawal, and R. Singh, Sensitivity of Thermal Conductivity for Al2O3 Nanofluids, Exp. Thermal Fluid Sci., 2017, 80(1), p 19–26Google Scholar
  24. 24.
    S.Z. Guo, Y. Li, J.S. Jiang, and H.Q. Xie, Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements, Nanoscale Res. Lett., 2010, 5(7), p 1222Google Scholar
  25. 25.
    E. Ahmadloo and S. Azizi, Prediction of Thermal Conductivity of Various Nanofluids Using Artificial Neural Network, Int. Commun. Heat Mass Transf., 2016, 74(1), p 69–75Google Scholar
  26. 26.
    L. Motte, What are the Current Advances Regarding Iron Oxide Nanoparticles for Nanomedicine?, J. Bioanal. Biomed., 2012, 4(6), p 1–2Google Scholar
  27. 27.
    C. Montferrand, Y. Lalatonne, D. Bonnin, L. Motte, and P. Monod, Non Linear Magnetic Behavior Around Zero Field of an Assembly of Superparamagnetic Nanoparticles, Analyst, 2012, 137(1), p 2304–2308Google Scholar
  28. 28.
    W. Yu and S.U.S. Choi, The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model, J. Nanopart. Res., 2003, 5(1), p 167–171Google Scholar
  29. 29.
    C.J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutta, Molecular Layering in a Liquid on a Solid Substrate: An X-ray Reflectivity Study, Phys. B, 2000, 283(1), p 27–31Google Scholar
  30. 30.
    N. Kumar and S.S. Sonawane, Experimental Study of Fe2O3/Water and Fe2O3/Ethylene Glycol Nanofluid Heat Transfer Enhancement in a Shell and Tube Heat Exchanger, Int. Commun. Heat Mass, 2016, 78(1), p 277–284Google Scholar
  31. 31.
    N. Zouli, I.A. Said, and M. Al-Dahhan, Enhancement of Thermal Conductivity and Local Heat Transfer Coefficients Using Fe2O3/Water Nanofluid for Improved Thermal Desalination Processes, J. Nanofluids, 2019, 8(5), p 1103–1122Google Scholar
  32. 32.
    S.Z. Guo, Y. Li, J.S. Jiang, and H.Q. Xie, Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements, Nanoscale Res. Lett., 2010, 5(1), p 1222–1227Google Scholar
  33. 33.
    L. Colla, L. Fedele, M. Scattolini, and S. Bobbo, Water-Based Fe2O3 Nanofluid Characterization: Thermal Conductivity and Viscosity Measurements and Correlation, Adv. Mech. Eng., 2012, 4(1), p 1–8Google Scholar
  34. 34.
    G. Huminic, A. Huminic, F. Dumitrache, C. Fleaca, and I. Morjan, Experimental Study of Thermo-Physical Properties of Nanofluids Based on γ- Fe2O3 Nanoparticles for Heat Transfer Applications, Heat Transf. Eng., 2017, 38(17), p 1496–1505Google Scholar
  35. 35.
    I. Nurdin, M.R. Johan, and B.C. Ang, Experimental Investigation on Thermal Conductivity and Viscosity of Maghemite (γ–Fe2O3) Water-based Nanofluids, IOP Conf. Ser. Mater. Sci. Eng., 2018, 334(1), p 1–7Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Ravi Agarwal
    • 1
    Email author
  • Kamalesh Verma
    • 2
  • Narendra Kumar Agrawal
    • 3
  • Ramvir Singh
    • 2
  1. 1.Centre for Converging TechnologiesUniversity of RajasthanJaipurIndia
  2. 2.Department of PhysicsUniversity of RajasthanJaipurIndia
  3. 3.Department of PhysicsPoddar International CollegeJaipurIndia

Personalised recommendations