Advertisement

Out-of-Phase Thermomechanical Fatigue Behavior of a NiCrAlYSi-Coated Superalloy

  • Hu Xiaoan
  • Zhao Gaole
  • Huang JiaEmail author
  • Wang Xiangyi
  • Yang Xiaoguang
Article

Abstract

Arc ion plating was employed on a directionally solidified nickel-based superalloy to deposit a NiCrAlYSi coating. The failure behavior of the coated cylindrically specimens under thermomechanical fatigue loadings was experimentally investigated. The results show that the effect of coatings on TMF lives is dependent on the temperature ranges, and the TMF life with dwell time is reduced compared to the one without dwells. Through microstructure observation methods, the Al-rich areas in the coatings especially near the interfaces of the coating and superalloy are crack initiation sites. The combination of temperature dependent localized oxidation and stress concentration at the crack tip dominate the crack initiation and small crack propagation procedure.

Keywords

coating crack oxidation superalloy thermomechanical fatigue 

Notes

Funding

This study was funded by the National Basic Research Program of China (2015CB057400).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    A. Lasalmonie, F. Pellerin, and D. Föurnder, Thermomechanical Fatigue in Gas Turbine Engines the Reasons of a Concern, The 81st Meeting of the AGARD SMP Panel on Thermal Mechanical Fatigue of Aircraft Engine Materials,  Canada, 1995Google Scholar
  2. 2.
    Z. Soleimanipour, S. Baghshahi, and R. Shoja-razavi, Improving the Thermal Shock Resistance of Thermal Barrier Coatings Through Formation of an In Situ YSZ/Al2O3 Composite via Laser Cladding, J. Mater. Eng. Perform., 2017, 26(4), p 1890–1899CrossRefGoogle Scholar
  3. 3.
    H.M. Tawancy, L.M. Alhems, and M.O. Aboelfotoh, Performance of Bond Coats Modified by Platinum Group Metals for Applications in Thermal Barrier Coatings, J. Mater. Eng. Perform., 2017, 26(7), p 3191–3203CrossRefGoogle Scholar
  4. 4.
    Y. Itoh, M. Saitoh, K. Takaki, and K. Fujiyama, Effect of High-Temperature Protective Coatings on Fatigue Lives of Nickel-Based Superalloys, Fatigue Fract. Eng. Mater. Struct., 2001, 24(12), p 843–854CrossRefGoogle Scholar
  5. 5.
    Y. Itoh, M. Saitoh, and Y. Ishiwata, Influence of High-Temperature Protective Coatings on the Mechanical Properties of Nickel-Based Superalloys, J. Mater. Sci., 1999, 34(16), p 3957–3966CrossRefGoogle Scholar
  6. 6.
    X.M. Wu, J.P. Li, Y. Cai, P.F. Zhang, and L.M. He, Effect of NiCrAlYSi Coating on Mechanical Properties of DZ125 Alloy, Equip. Environ. Eng., 2009, 5, p 4–9Google Scholar
  7. 7.
    R. Kowalewski and H. Mughrabi, Influence of a Plasma-Sprayed NiCrAlY Coating on the Low-Cycle Fatigue Behaviour of a Directionally Solidified Nickel-Base Superalloy, Mater. Sci. Eng. A, 1998, 247(1–2), p 295–299CrossRefGoogle Scholar
  8. 8.
    X. Yang, S. Li, and H. Qi, Effect of MCrAlY Coating on the Low-Cycle Fatigue Behavior of a Directionally Solidified Nickel-Base Superalloy at Different Temperatures, Int. J. Fatigue, 2015, 75, p 126–134CrossRefGoogle Scholar
  9. 9.
    A.K. Ray, S.C. Bose, P.K. De, and D.K. Das, Lifetime Evaluation of a Thick Thermal Barrier Coated Superalloy used in Turbine Blade, Mater. Sci. Eng. A, 2010, 527(21–22), p 5474–5483CrossRefGoogle Scholar
  10. 10.
    Y.Z. Liu, X.B. Hu, S.J. Zheng, Y.L. Zhu, H. Wei, and X.L. Ma, Microstructural Evolution of the Interface Between NiCrAlY Coating and Superalloy During Isothermal Oxidation, Mater. Des., 2015, 80, p 63–69CrossRefGoogle Scholar
  11. 11.
    T.P. Gabb, R.B. Rogers, J.A. Nesbitt, R.A. Miller, B.J. Puleo, D. Johnson, J. Telesman, S.L. Draper, and I.E. Locci, Influences of Processing and Fatigue Cycling on Residual Stresses in a NiCrY-Coated Powder Metallurgy Disk Superalloy, J. Mater. Eng. Perform., 2017, 26, p 1–14CrossRefGoogle Scholar
  12. 12.
    Z.B. Chen, Z.W. Huang, Z.G. Wang, and S.J. Zhu, Failure Behavior of Coated Nickel-Based Superalloy under Thermomechanical Fatigue, J. Mater. Sci., 2009, 44(23), p 6251–6257CrossRefGoogle Scholar
  13. 13.
    M. Tanaka, C. Mercer, Y. Kagawa, and A.G. Evans, Thermomechanical Fatigue Damage Evolution in a Superalloy/Thermal Barrier System Containing a Circular Through Hole, J. Am. Ceram. Soc., 2011, 94(Supplement s1), p s128–s135CrossRefGoogle Scholar
  14. 14.
    R. Nützel, E. Affeldt, and M. Göken, Damage Evolution During Thermo-Mechanical Fatigue of a Coated Monocrystalline Nickel-Base Superalloy, Int. J. Fatigue, 2008, 30(2), p 313–317CrossRefGoogle Scholar
  15. 15.
    X. Hu, X. Yang, D. Shi, and H. Yu, Out of Phase Thermal Mechanical Fatigue Investigation of a Directionally Solidified Superalloy DZ125, Chin. J. Aeronaut., 2016, 29(1), p 257–267CrossRefGoogle Scholar
  16. 16.
    C. Krywka, H. Neubauer, M. Priebe, T. Salditt, J. Keckes, A. Buffet, S.V. Roth, R. Doehrmann, and M. Mueller, A Two-Dimensional Waveguide Beam for X-ray Nanodiffraction, J. Appl. Crystallogr., 2012, 45(1), p 8CrossRefGoogle Scholar
  17. 17.
    C. Krywka, M. Paulus, C. Sternemann, M. Volmer, A. Remhof, G. Nowak, A. Nefedov, B. Pöter, M. Spiegel, and M. Tolan, The New Diffractometer for Surface X-ray Diffraction at Beamline BL9 of DELTA, J. Synchrotron Radiat., 2010, 13(1), p 8–13CrossRefGoogle Scholar
  18. 18.
    A. Zeilinger, J. Todt, C. Krywka, M. Müller, W. Ecker, B. Sartory, M. Meindlhumer, M. Stefenelli, R. Daniel, and C. Mitterer, In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation, Sci. Rep., 2016, 6, p 22670CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Hu Xiaoan
    • 1
    • 2
  • Zhao Gaole
    • 1
    • 2
  • Huang Jia
    • 3
    Email author
  • Wang Xiangyi
    • 4
  • Yang Xiaoguang
    • 1
    • 2
    • 5
  1. 1.School of Aircraft EngineeringNanchang Hangkong UniversityNanchangChina
  2. 2.Jiangxi Key Laboratory of Micro Aeroengine TechnologyNanchangChina
  3. 3.Shijiazhuang Flying CollegeShijiazhuangChina
  4. 4.School of Energy and Power EngineeringBeihang UniversityBeijingChina
  5. 5.China Aerodynamics Research and Development CenterMianyangChina

Personalised recommendations