Influence of Temperature Variation on the Formation and Corrosion Protective Performance of Calcium Carbonate Deposits in Artificial Seawater

  • M. Izadi
  • A. Yazdiyan
  • T. ShahrabiEmail author
  • S. M. Hoseinieh
  • H. Shahrabi


The aim of this research was to investigate the influence of temperature variation on the formation and protective behavior of calcium carbonate scale deposited on steel electrodes in artificial seawater. Chronoamperometry measurement, electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and x-ray diffraction (XRD) were employed for analysis. An increase in temperature from 20 to 50 °C accelerated the oxygen reduction reaction, which increased the nucleation/deposition rate. The chronoamperometry, SEM and XRD results indicated that complete coverage of the electrode surface was achieved at higher temperatures because a denser layer of scale deposits covered the entire surface of the metal and acted as a barrier against the passage of oxygen. The EIS results showed that better corrosion protection was obtained after deposition that included a stepwise decrease in temperature, indicating fewer pathways through the deposited layer onto the electrode surface.


calcareous deposits cathodic protection calcium carbonate carbon steel temperature variation 



  1. 1.
    R.E. Melchers and R. Jeffrey, Early Corrosion of Mild Steel in Seawater, Corros. Sci., 2005, 47(7), p 1678–1693Google Scholar
  2. 2.
    A.S.M. Handbook, Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM International, Almere, 2003Google Scholar
  3. 3.
    K. Zakowski, M. Szocinski, and M. Narozny, Study of the Formation of Calcareous Deposits on Cathodically Protected Steel in Baltic Sea Water, Anti-Corros. Methods Mater., 2013, 60(2), p 95–99Google Scholar
  4. 4.
    S. Elbeik, A. Tseung, and A. Mackay, The Formation of Calcareous Deposits during the Corrosion of Mild Steel in Sea Water, Corros. Sci., 1986, 26(9), p 669–680Google Scholar
  5. 5.
    C. Rousseau, F. Baraud, L. Leleyter, M. Jeannin, and O. Gil, Calcareous Deposit Formed under Cathodic Protection in the Presence of Natural Marine Sediments: A 12 Month Experiment, Corros. Sci., 2010, 52(6), p 2206–2218Google Scholar
  6. 6.
    K. Mantel, W. Hartt, and T.-Y. Chen, Substrate, Surface Finish, and Flow Rate Influences on Calcareous Deposit Structure, Corrosion, 1992, 48(6), p 489–500Google Scholar
  7. 7.
    A. Neville and A.P. Morizot, Calcareous Scales Formed by Cathodic Protection—An Assessment of Characteristics and Kinetics, J. Cryst. Growth, 2002, 243(3), p 490–502Google Scholar
  8. 8.
    C. Barchiche, C. Deslouis, O. Gil, P. Refait, and B. Tribollet, Characterisation of Calcareous Deposits by Electrochemical Methods: Role of Sulphates, Calcium Concentration and Temperature, Electrochim. Acta, 2004, 49(17), p 2833–2839Google Scholar
  9. 9.
    Y. Yang, J.D. Scantlebury, and E.V. Koroleva, A Study of Calcareous Deposits on Cathodically Protected Mild Steel in Artificial Seawater, Metals, 2015, 5(1), p 439–456Google Scholar
  10. 10.
    H. Moller, E.T. Boshoff, and H. Froneman, The Corrosion Behaviour of a Low Carbon Steel in Natural and Synthetic Seawaters, J. S. Afr. Inst. Min. Metall., 2006, 106(8), p 585–592Google Scholar
  11. 11.
    C. Rousseau, F. Baraud, L. Leleyter, M. Jeannin, and O. Gil, Kaolinite Influence on Calcareous Deposit Formation, Electrochim. Acta, 2009, 55(1), p 196–203Google Scholar
  12. 12.
    H. Möller, The Influence of Mg2+ on the Formation of Calcareous Deposits on a Freely Corroding Low Carbon Steel in Seawater, Corros. Sci., 2007, 49(4), p 1992–2001Google Scholar
  13. 13.
    Y.B. Amor, L. Bousselmi, B. Tribollet, and E. Triki, Study of the Effect of Magnesium Concentration on the Deposit of Allotropic Forms of Calcium Carbonate and Related Carbon Steel Interface Behavior, Electrochim. Acta, 2010, 55(16), p 4820–4826Google Scholar
  14. 14.
    M. Eashwar, P. Sathish Kumar, R. Ravishankar, and G. Subramanian, Sunlight-Enhanced Calcareous Deposition on Cathodic Stainless Steel in Natural Seawater, Biofouling, 2013, 29(2), p 185–193Google Scholar
  15. 15.
    S. Lajevardi, H. Tafreshi, and T. Shahrabi, Investigation of Calcareous Deposits Formation on 5052 Aluminium Alloy under Cathodic Polarisation in Natural and Artificial Sea Water, Corros. Eng. Sci. Technol., 2011, 46(3), p 249–255Google Scholar
  16. 16.
    M. Sarlak, T. Shahrabi, and M. Zamanzade, Investigation of Calcareous Deposits Formation on Copper and 316L Stainless Steel under Cathodic Polarization in Artificial Seawater, Prot. Met. Phys. Chem. Surf., 2009, 45(2), p 216–222Google Scholar
  17. 17.
    N. Ce and S. Paul, The Effect of Temperature and Local pH on Calcareous Deposit Formation in Damaged Thermal Spray Aluminum (TSA) Coatings and Its Implication on Corrosion Mitigation of Offshore Steel Structures, Coatings, 2017, 7(4), p 52Google Scholar
  18. 18.
    C. Li, M. Du, J. Qiu, J. Zhang, and C. Gao, Influence of Temperature on the Protectiveness and Morphological Characteristics of Calcareous Deposits Polarized by Galvanostatic Mode, Acta Metall. Sin. (English Letters), 2014, 27(1), p 131–139Google Scholar
  19. 19.
    H. Karoui, B. Riffault, M. Jeannin, A. Kahoul, O. Gil, M. Ben Amor, and M.M. Tlili, Electrochemical Scaling of Stainless Steel in Artificial Seawater: Role of Experimental Conditions on CaCO3 and Mg(OH)2 Formation, Desalination, 2013, 311, p 234–240Google Scholar
  20. 20.
    J.F. Yan, R.E. White, and R. Griffin, Parametric Studies of the Formation of Calcareous Deposits on Cathodically Protected Steel in Seawater, J. Electrochem. Soc., 1993, 140(5), p 1275–1280Google Scholar
  21. 21.
    A. Benedetti, L. Magagnin, F. Passaretti, E. Chelossi, M. Faimali, and G. Montesperelli, Calcareous Deposit Precipitation on Cathodically Polarized Carbon Steel in Natural Seawater Exposed to Daylight Cycles, in The Seventeenth International Offshore and Polar Engineering Conference, 2007, International Society of Offshore and Polar EngineersGoogle Scholar
  22. 22.
    B.O. Hasan and M.F. Abdul-Jabbar, Cathodic Protection of Carbon Steel in 0.1 N NaCl Solution under Flow Conditions Using Rotating Cylinder Electrode, J. Eng., 2012, 18(4), p 403–414Google Scholar
  23. 23.
    A.D. Wanamaker, K.J. Kreutz, B.R. Schöne, and D.S. Introne, Gulf of Maine Shells Reveal Changes in Seawater Temperature Seasonality during the Medieval Climate Anomaly and the Little Ice Age, Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011, 302(1), p 43–51Google Scholar
  24. 24.
    R.H. Stewart, Introduction to Physical Oceanography, Texas A&M University, College Station, 2008Google Scholar
  25. 25.
    M. Whitehouse, J. Priddle, and C. Symon, Seasonal and Annual Change in Seawater Temperature, Salinity, Nutrient and Chlorophyll a Distributions Around South Georgia, South Atl. Deep Sea Res. Part I, Oceanogr. Res. Pap., 1996, 43(4), p 425–443Google Scholar
  26. 26.
    C. Barchiche, C. Deslouis, D. Festy, O. Gil, P. Refait, S. Touzain, and B. Tribollet, Characterization of Calcareous Deposits in Artificial Seawater by Impedance Techniques: 3—Deposit of CaCO3 in the Presence of Mg(II), Electrochim. Acta, 2003, 48(12), p 1645–1654Google Scholar
  27. 27.
    S.M. Hoseinieh and T. Shahrabi, Influence of Ionic Species on Scaling and Corrosion Performance of AISI, 316L Rotating Disk Electrodes in Artificial Seawater, Desalination, 2017, 409, p 32–46Google Scholar
  28. 28.
    M. Kunjapur, W. Hartt, and S. Smith, Influence of Temperature and Exposure Time Upon Calcareous Deposits, Corrosion, 1987, 43(11), p 674–679Google Scholar
  29. 29.
    R. Ketrane, B. Saidani, O. Gil, L. Leleyter, and F. Baraud, Efficiency of Five Scale Inhibitors on Calcium Carbonate Precipitation from Hard Water: Effect of Temperature and Concentration, Desalination, 2009, 249(3), p 1397–1404Google Scholar
  30. 30.
    G. Salvago, S. Maffi, A. Benedetti, and L. Magagnin, Coating Electroaccretion on Galvanized Iron and Aluminum in Seawater, Electrochim. Acta, 2004, 50(1), p 169–178Google Scholar
  31. 31.
    L. Sawyer, A. Routley, D. Chapman, and J. Crennell, Current Density Required for Cathodic Protection, J. Chem. Technol. Biotechnol., 1965, 15(4), p 182–190Google Scholar
  32. 32.
    E. Caspi, B. Pokroy, P. Lee, J. Quintana, and E. Zolotoyabko, On the Structure of Aragonite, Acta Crystallogr. B, 2005, 61(2), p 129–132Google Scholar
  33. 33.
    M. Zamanzade, T. Shahrabi, and A. Yazdian, Improvement of Corrosion Protection Properties of Calcareous Deposits on Carbon Steel by Pulse Cathodic Protection in Artificial Sea Water, Anti-Corros. Methods Mater., 2007, 54(2), p 74–81Google Scholar
  34. 34.
    H. Wang, V. Alfredsson, J. Tropsch, R. Ettl, and T. Nylander, Formation of CaCO3 Deposits on Hard Surfaces: Effect of Bulk Solution Conditions and Surface Properties, ACS Appl. Mater. Interfaces, 2013, 5(10), p 4035–4045Google Scholar
  35. 35.
    A. Declet, E. Reyes, and O. Suárez, Calcium Carbonate Precipitation: A Review of the Carbonate Crystallization Process and Applications in Bioinspired Compostes, Rev. Adv. Mater. Sci., 2016, 44, p 1Google Scholar
  36. 36.
    S. Lin and S. Dexter, Effects of Temperature and Magnesium Ions on Calcareous Deposition, Corrosion, 1988, 44(9), p 615–622Google Scholar
  37. 37.
    K. Whitten, R. Davis, L. Peck, and G. Stanley, Chemistry, 10th ed., Cengage Learning, 2013Google Scholar
  38. 38.
    O. Lopez, P. Zuddas, and D. Faivre, The Influence of Temperature and Seawater Composition on Calcite Crystal Growth Mechanisms and Kinetics: Implications for Mg Incorporation in Calcite Lattice, Geochim. Cosmochim. Acta, 2009, 73(2), p 337–347Google Scholar
  39. 39.
    S.M. Hoseinieh, T. Shahrabi, M. Farrokhi Rad, and B. Ramezanzadeh, Influence of Sour Oil on Calcareous Deposit Nucleation, Anti-Corros. Methods Mater., 2017, 64(2), p 129–135Google Scholar
  40. 40.
    M. Izadi, I. Mohammadi, T. Shahrabi, B. Ramezanzadeh, and A. Fateh, Corrosion Inhibition Performance of Novel Eco-Friendly Nanoreservoirs as Bi-component Active System on Mild Steel in Aqueous Chloride Solution, J. Taiwan Inst. Chem. Eng., 2019, 95, p 555–568Google Scholar
  41. 41.
    S.M. Hoseinieh, T. Shahrabi, B. Ramezanzadeh, and M. Farrokhiad, Influence of Sweet Crude Oil on Nucleation and Corrosion Resistance of Calcareous Deposits, J. Mater. Eng. Perform., 2016, 25(11), p 4805–4811Google Scholar
  42. 42.
    S.M. Hoseinieh, T. Shahrabi, B. Ramezanzadeh, and M. Farrokhi Rad, The Role of Porosity and Surface Morphology of Calcium Carbonate Deposits on the Corrosion Behavior of Unprotected API, 5L X52 Rotating Disk Electrodes in Artificial Seawater, J. Electrochem. Soc., 2016, 163(9), p C515–C529Google Scholar
  43. 43.
    S.M. Hoseinieh, A. Homborg, T. Shahrabi, J. Mol, and B. Ramezanzadeh, A Novel Approach for the Evaluation of under Deposit Corrosion in Marine Environments Using Combined Analysis by Electrochemical Impedance Spectroscopy and Electrochemical Noise, Electrochim. Acta, 2016, 217, p 226–241Google Scholar
  44. 44.
    M. Mahdavian and M. Attar, Another Approach in Analysis of Paint Coatings with EIS Measurement: Phase Angle at High Frequencies, Corros. Sci., 2006, 48(12), p 4152–4157Google Scholar
  45. 45.
    M. Mahdavian and M. Attar, The Effect of Benzimidazole and Zinc Acetylacetonate Mixture on Cathodic Disbonding of Epoxy Coated Mild Steel, Prog. Org. Coat., 2009, 66(2), p 137–140Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, Faculty of EngineeringTarbiat Modares UniversityTehranIran

Personalised recommendations