Advertisement

Effects of Holding Time on the Sintering of Cemented Tungsten Carbide Powder and Bonding with High-Strength Steel Wire

  • Mahadi HasanEmail author
  • Jingwei Zhao
  • Zhenyi Huang
  • Hui Wu
  • Fanghui Jia
  • Zhengyi Jiang
Article
  • 115 Downloads

Abstract

Cemented tungsten carbide (WC-10Co) and high-strength (AISI 4340) steel were successfully bonded by hot compaction diffusion bonding at a low temperature. The effects of holding time (5-50 min) on microstructure and mechanical properties of the sintered carbides and bonding strengths of the dissimilar bilayered composite materials were examined. The results show that the mechanical properties of the carbides increase, but the bonding strength increases firstly and then decreases with the increase in holding time. The maximum density and hardness achieved are 95.92 and 99.5%, respectively. A transitional layer forms at the interface as a result of elemental interdiffusion. The depth of the layer increases with the increase in holding time. The optimal bonding time is determined to be 40 min at a temperature of 1200°C and a pressure 160 MPa, by which the maximum bonding strength of 204 MPa of the WC-10Co/4340 steel joints can be achieved.

Keywords

bonding interface bilayered composite elemental diffusion microstructural characterization powder–solid diffusion bonding 

Notes

Acknowledgments

The authors would like to thank the Australian Research Council (ARC) for its financial support for the current study. We also acknowledge the use of facilities within the UOW Electron Microscopy Centre.

References

  1. 1.
    M. Hasan et al., Analysis of Sintering and Bonding of Ultrafine WC Powder and Stainless Steel by Hot Compaction Diffusion Bonding, Fusion Eng. Des., 2018, 133, p 39–50CrossRefGoogle Scholar
  2. 2.
    A. Thomazic, C. Pascal, and J.M. Chaix, Fabrication of (Cemented Carbides/Steel) Bilayered Materials by Powder Metallurgy, Materials Science Forum, Vols. 631–632, Trans Tech Publications Ltd., 2010, p 239–244Google Scholar
  3. 3.
    M. Hasan, J. Zhao, and Z. Jiang, A Review of Modern Advancements in Micro Drilling Techniques, J. Manuf. Process., 2017, 29, p 343–375CrossRefGoogle Scholar
  4. 4.
    C. Pascal et al., Pressureless Co-sintering Behaviour of a Steel/Cemented Carbide Component: model Bimaterial, Int. J. Mater. Res., 2012, 103(3), p 296–308CrossRefGoogle Scholar
  5. 5.
    Y. Zheng et al., Preparation and Mechanical Properties of TiC-Fe Cermets and TiC-Fe/Fe Bilayer Composites, J. Mater. Eng. Perform., 2017, 26(10), p 4933–4939CrossRefGoogle Scholar
  6. 6.
    A.K. Maiti, N. Mukhopadhyay, and R. Raman, Improving the Wear Behavior of WC-CoCr-Based HVOF Coating by Surface Grinding, J. Mater. Eng. Perform., 2009, 18(8), p 1060CrossRefGoogle Scholar
  7. 7.
    K. Feng et al., Investigation on Diffusion Bonding of Functionally Graded WC-Co/Ni Composite and Stainless Steel, Mater. Des., 2013, 46, p 622–626CrossRefGoogle Scholar
  8. 8.
    W.-B. Lee, B.-D. Kwon, and S.-B. Jung, Effects of Cr3C2 on the Microstructure and Mechanical Properties of the Brazed Joints Between WC-Co and Carbon Steel, Int. J. Refract. Met. Hard Mater., 2006, 24(3), p 215–221CrossRefGoogle Scholar
  9. 9.
    J. Bao, J.W. Newkirk, and S. Bao, Wear-Resistant WC Composite Hard Coatings by Brazing, J. Mater. Eng. Perform., 2004, 13(4), p 385–388CrossRefGoogle Scholar
  10. 10.
    X.Z. Zhang et al., Vacuum Brazing of WC-8Co Cemented Carbides to Carbon Steel Using Pure Cu and Ag-28Cu as Filler Metal, J. Mater. Eng. Perform., 2017, 26(2), p 488–494CrossRefGoogle Scholar
  11. 11.
    S. Giménez et al., Chemical Reactivity of PVD-Coated WC-Co Tools with Steel, Appl. Surf. Sci., 2007, 253(7), p 3547–3556CrossRefGoogle Scholar
  12. 12.
    Z. Zhong et al., Microstructure and Mechanical Properties of Diffusion Bonded Joints Between Tungsten and F82H Steel Using a Titanium Interlayer, J. Alloy. Compd., 2010, 489(2), p 545–551CrossRefGoogle Scholar
  13. 13.
    M. Barrena, J.G. De Salazar, and L. Matesanz, Interfacial Microstructure and Mechanical Strength of WC-Co/90MnCrV8 Cold Work Tool Steel Diffusion Bonded Joint with Cu/Ni Electroplated Interlayer, Mater. Des., 2010, 31(7), p 3389–3394CrossRefGoogle Scholar
  14. 14.
    J. Missiaen et al., Design of a W/Steel Functionally Graded Material for Plasma Facing Components of DEMO, J. Nucl. Mater., 2011, 416(3), p 262–269CrossRefGoogle Scholar
  15. 15.
    Z.-H. Yang et al., Tungsten/Steel Diffusion Bonding Using Cu/W-Ni/Ni Multi-interlayer, Trans. Nonferrous Met. Soc. China, 2014, 24(8), p 2554–2558CrossRefGoogle Scholar
  16. 16.
    T. Grunder et al., Residual Stress in Brazing of Submicron Al2O3 to WC-Co, J. Mater. Eng. Perform., 2016, 25(7), p 2914–2921CrossRefGoogle Scholar
  17. 17.
    T. Hirose et al., Joining Technologies of Reduced Activation Ferritic/Martensitic Steel for Blanket Fabrication, Fusion Eng. Des., 2006, 81(1), p 645–651CrossRefGoogle Scholar
  18. 18.
    H. Greuner et al., Vacuum Plasma-Sprayed Tungsten on EUROFER and 316L: Results of Characterisation and Thermal Loading Tests, Fusion Eng. Des., 2005, 75, p 333–338CrossRefGoogle Scholar
  19. 19.
    M. Rosinski et al., W/Cu Composites Produced by Pulse Plasma Sintering Technique (PPS), Fusion Eng. Des., 2007, 82(15), p 2621–2626CrossRefGoogle Scholar
  20. 20.
    C. Pascal, et al. Elaboration of (steel/cemented carbide) multimaterial by powder metallurgy, in Materials Science Forum (Trans Tech Publ, 2007)Google Scholar
  21. 21.
    Z.Z. Fang et al., Synthesis, Sintering, Mechanical Properties of Nanocrystalline Cemented Tungsten Carbide—A Review, Int. J. Refract. Met. Hard Mater., 2009, 27(2), p 288–299CrossRefGoogle Scholar
  22. 22.
    S. Zafar and A.K. Sharma, Development and Characterisations of WC-12Co Microwave Clad, Mater. Charact., 2014, 96, p 241–248CrossRefGoogle Scholar
  23. 23.
    C. Pascal et al., Design of Multimaterial Processed by Powder Metallurgy: Processing of a (Steel/Cemented Carbides) Bilayer Material, J. Mater. Process. Technol., 2009, 209(3), p 1254–1261CrossRefGoogle Scholar
  24. 24.
    S. Takemoto et al., Diffusion of Tungsten in α-Iron, Philos. Mag., 2007, 87(11), p 1619–1629CrossRefGoogle Scholar
  25. 25.
    Y. Shinoda, T. Akatsu, and F. Wakai, Integrated Molding of Nanocrystalline Tungsten Carbide Powder with Stainless Steel, Mater. Sci. Eng., B, 2008, 148(1), p 145–148CrossRefGoogle Scholar
  26. 26.
    C.P. Paul et al., Cladding of WC-12 Co on Low Carbon Steel Using a Pulsed Nd:YAG Laser, Mater. Sci. Eng., A, 2007, 464(1), p 170–176CrossRefGoogle Scholar
  27. 27.
    G. Goren-Muginstein, S. Berger, and A. Rosen, Sintering Study of Nanocrystalline Tungsten Carbide Powders, Nanostruct. Mater., 1998, 10(5), p 795–804CrossRefGoogle Scholar
  28. 28.
    J.S. Xu et al., Microstructure and Sliding Wear Resistance of Laser Cladded WC/Ni Composite Coatings with Different Contents of WC Particle, J. Mater. Eng. Perform., 2012, 21(9), p 1904–1911CrossRefGoogle Scholar
  29. 29.
    L. Sun, C.-C. Jia, and M. Xian, A research on the Grain Growth of WC-Co Cemented Carbide, Int. J. Refract. Met. Hard Mater., 2007, 25(2), p 121–124CrossRefGoogle Scholar
  30. 30.
    P. Arato et al., Solid or Liquid Phase Sintering of Nanocrystalline WC/Co Hardmetals, Nanostruct. Mater., 1998, 10(2), p 245–255CrossRefGoogle Scholar
  31. 31.
    H. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge, 2007CrossRefGoogle Scholar
  32. 32.
    S. Haglund and J. Ågren, W Content in Co Binder During Sintering of WC-Co, Acta Mater., 1998, 46(8), p 2801–2807CrossRefGoogle Scholar
  33. 33.
    A. Petersson, Cemented Carbide Sintering: Constitutive Relations and Microstructural Evolution, Department of Materials Science and Engineering, Royal Institute of Technology, Högskoletryckeriet, Stockholm, 2004Google Scholar
  34. 34.
    The Welding Institute, What are The Microstructural Constituents Austenite, Martensite, Bainite, Pearlite and Ferrite?, 2018. https://www.twi-global.com/technical-knowledge/faqs/faq-what-are-the-microstructural-constituents-austenite-martensite-bainite-pearlite-and-ferrite/. Accessed 15 Jan 2018
  35. 35.
    A.S.F. Metals, Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Russell Township, 1977Google Scholar
  36. 36.
    W.W. Basuki and J. Aktaa, Diffusion Bonding Between W and EUROFER97 Using V Interlayer, J. Nucl. Mater., 2012, 429(1), p 335–340CrossRefGoogle Scholar
  37. 37.
    W. Basuki and J. Aktaa, Investigation of Tungsten/EUROFER97 Diffusion Bonding Using Nb Interlayer, Fusion Eng. Des., 2011, 86(9), p 2585–2588CrossRefGoogle Scholar
  38. 38.
    Z. Zhong, T. Hinoki, and A. Kohyama, Effect of Holding Time on the Microstructure and Strength of Tungsten/Ferritic Steel Joints Diffusion Bonded with a Nickel Interlayer, Mater. Sci. Eng., A, 2009, 518(1), p 167–173CrossRefGoogle Scholar
  39. 39.
    T.T. Sasaki et al., Microstructural Evolution of copper Clad Steel Bilayered Wire, Mater. Sci. Eng., A, 2011, 528(6), p 2974–2981CrossRefGoogle Scholar
  40. 40.
    L. Dong et al., Metallurgical Process Analysis and Microstructure Characterization of the Bonding Interface of QAl9-4 Aluminum Bronze and 304 Stainless Steel Composite Materials, J. Mater. Process. Technol., 2016, 238, p 325–332CrossRefGoogle Scholar
  41. 41.
    D.V. Suetin, I.R. Shein, and A.L. Ivanovskii, Structural, Electronic and Magnetic Properties of η Carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first Principles Calculations, Phys. B, 2009, 404(20), p 3544–3549CrossRefGoogle Scholar
  42. 42.
    I.F. Machado et al., The Study of Ternary Carbides Formation During SPS Consolidation Process in the WC-Co-Steel System, Int. J. Refract Metal Hard Mater., 2009, 27(5), p 883–891CrossRefGoogle Scholar
  43. 43.
    N.A. Dubrovinskaia et al., Thermal Expansion and Compressibility of Co6W6C, J. Alloy. Compd., 1999, 285(1), p 242–245CrossRefGoogle Scholar
  44. 44.
    A.R. Trueman, D.P. Schweinsberg, and G.A. Hope, A Study of the Effect of Cobalt Additions on the Corrosion of Tungsten Carbide/Carbon Steel Metal Matrix Composites, Corros. Sci., 1999, 41(7), p 1377–1389CrossRefGoogle Scholar
  45. 45.
    H. Li et al., Microstructure Modifications and Phase Transformation in Plasma-Sprayed WC-Co Coatings Following Post-Spray Spark Plasma Sintering, Surf. Coat. Technol., 2005, 194(1), p 96–102CrossRefGoogle Scholar
  46. 46.
    D. Gupta and A.K. Sharma, Microstructural Characterization of Cermet Cladding Developed Through Microwave Irradiation, J. Mater. Eng. Perform., 2012, 21(10), p 2165–2172CrossRefGoogle Scholar
  47. 47.
    V. Ramnath and N. Jayaraman, Quantitative Phase Analysis by X-Ray Diffraction in the Co-W-C System, J. Mater. Sci. Lett., 1987, 6(12), p 1414–1418CrossRefGoogle Scholar
  48. 48.
    Q.-B. Yang and S. Andersson, Application of Coincidence Site Lattices for Crystal Structure Description. Part I: Σ = 3, Acta Crystallogr. Sect. B, 1987, 43(1), p 1–14CrossRefGoogle Scholar
  49. 49.
    P.Q. Xu et al., Analysis of Formation and Interfacial WC Dissolution Behavior of WC-Co/Invar Laser-TIG Welded Joints, J. Mater. Eng. Perform., 2013, 22(2), p 613–623CrossRefGoogle Scholar
  50. 50.
    A. Bansal, S. Zafar, and A.K. Sharma, Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad, J. Mater. Eng. Perform., 2015, 24(10), p 3708–3716CrossRefGoogle Scholar
  51. 51.
    X. Gao et al., Effects of Temperature and Strain Rate on Microstructure and Mechanical Properties of High Chromium Cast Iron/Low Carbon Steel Bilayered Prepared by Hot Diffusion-Compression Bonding, Mater. Des., 2014, 63, p 650–657CrossRefGoogle Scholar
  52. 52.
    L. Zhong et al., Microstructural and Mechanical Properties of In Situ WC-Fe/Fe Composites, J. Mater. Eng. Perform., 2015, 24(11), p 4561–4568CrossRefGoogle Scholar
  53. 53.
    G. Krauss, Martensite in Steel: Strength and Structure, Mater. Sci. Eng., A, 1999, 273–275, p 40–57CrossRefGoogle Scholar
  54. 54.
    C. Steinbach, Tungsten Carbide-CobaltMaterial Information, Information About Nanomaterials and Their Safety Assessment, 2014. https://www.nanopartikel.info/en/nanoinfo/materials/tungsten-carbide-cobalt/material-information#literatur. Accessed 5 Mar 2017
  55. 55.
    N. Romanova, G. Kreimer, and V. Tumanov, Effects of Residual Porosity on the Properties of Tungsten Carbide-Cobalt Hard Alloys, Sov. Powder Metall. Met. Ceram., 1974, 13(8), p 670–673CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Mechanical, Materials, Mechatronic and Biomedical EngineeringUniversity of WollongongWollongongAustralia
  2. 2.School of Materials Science and EngineeringAnhui University of TechnologyMaanshanChina

Personalised recommendations