Advertisement

The Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coatings Fabricated on Aluminum in Silicate Electrolyte

  • Zhong Yang
  • Rui-qiang Wang
  • Chen Liu
  • Ye-kang Wu
  • Dong-dong Wang
  • Xin-tong Liu
  • Xu-zhen Zhang
  • Guo-rui Wu
  • De-jiu ShenEmail author
Article
  • 28 Downloads

Abstract

Plasma electrolytic oxidation (PEO) coatings were fabricated on the aluminum in silicate electrolyte. Microstructures and elemental compositions of these PEO coatings were examined by scanning electron microscopy (SEM) equipped with an energy-dispersive x-ray spectroscopy (EDS). Corrosion resistances of the coated samples were evaluated using the measurements of open-circuit potential (OCP), repetitive polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The results indicated that the PEO coatings not only act as a physical shield limiting the penetration of corrosive solution, but also establish an anodic location with high concentration of H+ ions and other product ions as pitting corrosion begins. With the development of pitting corrosion, the accumulation of corrosion products inside the pits and pores of the coatings decreases the corrosion process effectively.

Keywords

aluminum coatings EIS inorganic interface pitting corrosion plasma electrolytic oxidation 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51671167 and 51171167) and Hebei Province Natural Science Foundation of China (Nos. 2015203348 and B2015203406).

Reference

  1. 1.
    A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, Plasma Electrolysis for Surface Engineering, Surf. Coat. Technol., 1999, 122(2-3), p 73–93Google Scholar
  2. 2.
    J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate Based Electrolytes, Electrochim. Acta, 2009, 54(14), p 3842–3850Google Scholar
  3. 3.
    M. Vakili-Azghandi, A. Fattah-alhosseini, and M.K. Keshavarz, Effects of Al2O3 Nano-Particles on Corrosion Performance of Plasma Electrolytic Oxidation Coatings Formed on 6061 Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(12), p 5302–5313Google Scholar
  4. 4.
    A. Khakzad, S.M. Mousavi Khoi, S.A. Tayebifard, E. Aghaie, Y. Behnamian, M. Mozammel, and H. Maleki-Ghaleh, Alumina-Silica Composite Coatings on Aluminum by Plasma Electrolytic Oxidation: The Effect of Coating Time on Microstructure, Phase, and Corrosion Behavior, J. Mater. Eng. Perform., 2017, 26(6), p 2663–2670Google Scholar
  5. 5.
    J. Liang, P.B. Srinivasan, C. Blawert, and W. Dietzel, Influence of Chloride Ion Concentration on the Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy, Electrochim. Acta, 2010, 55(22), p 6802–6811Google Scholar
  6. 6.
    R. Arrabal, E. Matykina, P. Skeldon, and G.E. Thompson, Incorporation of Zirconia Particles Into Coatings Formed on Magnesium by Plasma Electrolytic Oxidation, J. Mater. Sci., 2008, 43(5), p 1532–1538Google Scholar
  7. 7.
    A. Fattah-alhosseini, S.O. Gashti, and M. Molaie, Effects of Disodium Phosphate Concentration (Na2HPO4·2H2O) on Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coatings on 2024 Al Alloy, J. Mater. Eng. Perform., 2018, 27(2), p 825–834Google Scholar
  8. 8.
    A. Sharma, Y.-J. Jang, and J.P. Jung, Effect of KOH to Na2SiO3 Ratio on Microstructure and Hardness of Plasma Electrolytic Oxidation Coatings on AA 6061 Alloy, J. Mater. Eng. Perform., 2017, 26(10), p 5032–5042Google Scholar
  9. 9.
    R.C. Barik, J.A. Wharton, R.J.K. Wood, K.R. Stokes, and R.L. Jones, Corrosion, Erosion and Erosion–Corrosion Performance of Plasma Electrolytic Oxidation (PEO) Deposited Al2O3 Coatings, Surf. Coat. Technol., 2005, 199(2-3), p 158–167Google Scholar
  10. 10.
    K. Du, X. Guo, Q. Guo, Y. Wang, F. Wang, and Y. Tian, Effect of PEO Coating Microstructure on Corrosion of Al 2024, J. Mater. Eng. Perform., 2012, 159(12), p C597–C606Google Scholar
  11. 11.
    D.Y. Hwang, M.K. Yong, D.Y. Park, B. Yoo, and H.S. Dong, Corrosion Resistance of Oxide Layers Formed on AZ91 Mg Alloy in KMnO4 Electrolyte by Plasma Electrolytic Oxidation, Electrochim. Acta, 2009, 54(23), p 5479–5485Google Scholar
  12. 12.
    G.H. Lv, H. Chen, X.Q. Wang, and H. Pang, Effect of Additives on Structure and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ91D Magnesium Alloy in Phosphate Based Electrolyte, Surf. Coat. Technol., 2010, 205(7), p S36–S40Google Scholar
  13. 13.
    H. Duan, C. Yan, and F. Wang, Effect of Electrolyte Additives on Performance of Plasma Electrolytic Oxidation Films Formed on Magnesium Alloy AZ91D, Electrochim. Acta, 2007, 52(11), p 3785–3793Google Scholar
  14. 14.
    J. Liang, P.B. Srinivasan, C. Blawert, and W. Dietzel, Influence of pH on the Deterioration of Plasma Electrolytic Oxidation Coated AM50 Magnesium Alloy in NaCl Solutions, Corros. Sci., 2010, 52(2), p 540–547Google Scholar
  15. 15.
    H. Khanmohammadi, S.R. Allahkaram, A. Igual Munoz, and N. Towhidi, The Influence of Current Density and Frequency on the Microstructure and Corrosion Behavior of Plasma Electrolytic Oxidation Coatings on Ti6Al4V, J. Mater. Eng. Perform., 2017, 26(2), p 931–944Google Scholar
  16. 16.
    D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, C. Subrahmanyam, L.R. Krishna, and K.P. Rao, Effect of K2TiF6 and Na2B4O7 as Electrolyte Additives on Pore Morphology and Corrosion Properties of Plasma Electrolytic Oxidation Coatings on ZM21 Magnesium Alloy, Surf. Coat. Technol., 2013, 222(6), p 31–37Google Scholar
  17. 17.
    D.A. Becerik, A. Ayday, L.C. Kumruoğlu, S.C. Kurnaz, and A. Özel, The Effects of Na2SiO3 Concentration on the Properties of Plasma Electrolytic Oxidation Coatings on 6060 Aluminum Alloy, J. Mater. Eng. Perform., 2011, 21(7), p 1426–1430Google Scholar
  18. 18.
    M. Roknian, A. Fattah-alhosseini, and S.O. Gashti, Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer’s Physiological Solution, J. Mater. Eng. Perform., 2018, 27(3), p 1343–1351Google Scholar
  19. 19.
    L. Wen, Y. Wang, Y. Zhou, L. Guo, and J.H. Ouyang, Microstructure and Corrosion Resistance of Modified 2024 Al Alloy Using Surface Mechanical Attrition Treatment Combined with Microarc Oxidation Process, Corros. Sci., 2011, 53(1), p 473–480Google Scholar
  20. 20.
    L. Pezzato, K. Brunelli, R. Babbolin, P. Dolcet, and M. Dabalà, Sealing of PEO Coated AZ91 Magnesium Alloy Using La-Based Solutions, Int. J. of Corros., 2017, 2017(3), p 1–13Google Scholar
  21. 21.
    M. Mohedano, C. Blawert, and M.L. Zheludkevich, Cerium-Based Sealing of PEO Coated AM50 Magnesium Alloy, Surf. Coat. Technol., 2015, 269(1), p 145–154Google Scholar
  22. 22.
    L.Y. Cui, S.D. Gao, P.P. Li, R.C. Zeng, F. Zhang, S.Q. Li, and E.H. Han, Corrosion Resistance of a Self-Healing Micro-Arc Oxidation/Polymethyltrimethoxysilane Composite Coating on Magnesium Alloy AZ31, Corros. Sci., 2017, 118, p 84–95Google Scholar
  23. 23.
    C. Wang, J. Shen, F. Xie, B. Duan, and X. Xie, A Versatile Dopamine-Induced Intermediate Layer for Polyether Imides (PEI) Deposition on Magnesium to Render Robust and High Inhibition Performance, Corros. Sci., 2017, 122, p 32–40Google Scholar
  24. 24.
    C.N. Cao and J.Q. Zhang, An Introduction of Electrochemical Impedance Spectroscopy Science, 2002, p 86–106Google Scholar
  25. 25.
    Y. Zhang, C. Yan, F. Wang, and W. Li, Electrochemical Behavior of Anodized Mg Alloy AZ91D in Chloride Containing Aqueous Solution, Corros. Sci., 2005, 47(11), p 2816–2831Google Scholar
  26. 26.
    Y. Zhang, Y. Wu, D. Chen, R. Wang, D. Li, C. Guo, G. Jiang, D. Shen, S. Yu, and P. Nash, Micro-Structures and Growth Mechanisms of Plasma Electrolytic Oxidation Coatings on Aluminium at Different Current Densities, Surf. Coat. Technol., 2017, 321, p 236–246Google Scholar
  27. 27.
    D. Chen, R. Wang, Z. Huang, Y. Wu, Y. Zhang, G. Wu, D. Li, C. Guo, G. Jiang, S. Yu, D. Shen, and P. Nash, Evolution Processes of the Corrosion Behavior and Structural Characteristics of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy, Appl. Surf. Sci., 2018, 434, p 326–335Google Scholar
  28. 28.
    V. Dehnavi, B.L. Luan, D.W. Shoesmith, X.Y. Liu, and S. Rohani, Effect of Duty Cycle and Applied Current Frequency on Plasma Electrolytic Oxidation (PEO) Coating Growth Behavior, Surf. Coat. Technol., 2013, 226(8), p 100–107Google Scholar
  29. 29.
    R.O. Hussein, X. Nie, D.O. Northwood, A. Yerokhin, and A. Matthews, Spectroscopic Study of Electrolytic Plasma and Discharging Behaviour During the Plasma Electrolytic Oxidation (PEO) Process, J. Phys. D Appl. Phys., 2010, 43(10), p 105203–105215Google Scholar
  30. 30.
    X. Nie, E.I. Meletis, J.C. Jiang, A. Leyland, A.L. Yerokhin, and A. Matthews, Abrasive Wear/Corrosion Properties and TEM Analysis of Al2O3 Coatings Fabricated Using Plasma Electrolysis, Surf. Coat. Technol., 2002, 149(2–3), p 245–251Google Scholar
  31. 31.
    F. Monfort, A. Berkani, E. Matykina, P. Skeldon, G.E. Thompson, H. Habazaki, and K. Shimizu, Development of Anodic Coatings on Aluminium Under Sparking Conditions in Silicate Electrolyte, Corros. Sci., 2007, 49(2), p 672–693Google Scholar
  32. 32.
    C. Liu, D. He, Q. Yan, Z. Huang, P. Liu, D. Li, G. Jiang, H. Ma, P. Nash, and D. Shen, An Investigation of the Coating/Substrate Interface of Plasma Electrolytic Oxidation Coated Aluminum, Surf. Coat. Technol., 2015, 280, p 86–91Google Scholar
  33. 33.
    Y. Wang, Z. Huang, Q. Yan, C. Liu, P. Liu, Y. Zhang, C. Guo, G. Jiang, and D. Shen, Corrosion Behaviors and Effects of Corrosion Products of Plasma Electrolytic Oxidation Coated AZ31 Magnesium Alloy Under the Salt Spray Corrosion Test, Appl. Surf. Sci., 2016, 378, p 435–442Google Scholar
  34. 34.
    J.W. Tester and H.S. Isaacs, Diffusional Effects in Simulated Localized Corrosion, J. Electrochem. Soc., 1975, 122(11), p 1438–1445Google Scholar
  35. 35.
    C. Vargel, M. Jacques, and M.P. Schmidt, Corrosion of Aluminium, 2004, p 81–109Google Scholar
  36. 36.
    K. Sasaki and H.S. Isaacs, Origins of Electrochemical Noise during Pitting Corrosion of Aluminum, J. Electrochem. Soc., 2004, 151(3), p B124–B133Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Zhong Yang
    • 1
  • Rui-qiang Wang
    • 1
  • Chen Liu
    • 1
  • Ye-kang Wu
    • 1
  • Dong-dong Wang
    • 1
  • Xin-tong Liu
    • 1
  • Xu-zhen Zhang
    • 1
  • Guo-rui Wu
    • 1
    • 2
  • De-jiu Shen
    • 1
    Email author
  1. 1.State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and EngineeringYanshan UniversityQinhuangdaoP. R. China
  2. 2.CITIC Dicastal Limited by Share LtdQinhuangdaoP. R. China

Personalised recommendations