Notch Tensile Behavior of the Mg-Zn-Gd-Zr Alloy

  • B. P. ChiranthEmail author
  • C. Siddaraju
  • T. Ram Prabhu


The Mg-Zn-Gd-Zr alloy is one of the important aerospace alloys in the aircraft gearbox applications. The complex geometry of the gearbox introduces several stress concentration points with various intensities. These regions are susceptible to catastrophic failure under mixed loading condition. Therefore, it is important to understand the deformation and failure mode of this alloy for various plastic constraint conditions. In the present work, Mg-4%Zn-1.5%Gd-0.5%Zr alloys were prepared with four different increasing notch root radii (1, 2, 4 and 8 mm). These samples were tested for tensile properties and compared with the smooth condition. In addition, notch sensitivity was determined analytically. The microstructure and fracture samples of the alloy were characterized with the aid of an optical/scanning electron microscope. Tensile test results show that the alloy is notch sensitive and shows notch-strengthening effects. The notch strength ratio increases with the decrease in the notch root radius due to the strong plastic constraint. The predicted and experimental results of the fracture strain with the notch root radius are in qualitative agreement. The void growth rate prediction is qualitatively in agreement with the tensile and fractography results and suggests that the notch geometry has a significant influence on the plastic strain of the alloy. The microstructure of the alloy has equiaxed grains of 74 ± 24 µm with the grain boundary eutectic. The eutectic is composed of Gd-rich Mg phase. The fracture surface has a distinct change from mixed mode to complete cleavage with the increasing notch root radius. The fractography results show that the fracture mode is predominantly intergranular for all the cases.


fractography magnesium alloy mechanical properties microstructure notch effects 



  1. 1.
    M.M. Avedesian and H. Baker, Magnesium and Magnesium Alloys—ASM Speciality Handbook, ASM International, Ohio, 1999Google Scholar
  2. 2.
    T. Ram Prabhu, Srikanth Vedantam, and Vijaya Singh, Magnesium alloys—Aerospace Materials and Material Technology, Indian Institute of Metal Series, Springer, Singapore, 2017Google Scholar
  3. 3.
    T. Rzychon, J. Michalska, and A. Kielbus, Corrosion Resistance of Mg-RE-Zr Alloys, J. Achiev. Mater. Manuf. Eng., 2007, 21(1), p 51–54Google Scholar
  4. 4.
    T. Zuzanka, D. Tibor, L. Pavel, P. Peter, C. Mária, T. Eva, and B. Ronald, Tensile and Fracture Properties of an Mg-RE-Zn Alloy at Elevated Temperatures, J. Rare Earths., 2014, 32(6), p 564–572CrossRefGoogle Scholar
  5. 5.
    L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals, Taylor & Francis cop, New York, 2003Google Scholar
  6. 6.
    T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, and J.F. Nie, The Effect of Alloy Composition on the Microstructure and Tensile Properties of Binary Mg-Rare Earth Alloys, Intermetallics, 2009, 17, p 481–490CrossRefGoogle Scholar
  7. 7.
    A. Akhtar and E. Teghtsoonian, Solid Solution Strengthening of Magnesium Single Crystals—I. Alloying Behaviour in Basal Slip, Acta Metall., 1969, 17, p 1339–1349CrossRefGoogle Scholar
  8. 8.
    C.H. Caceres and A.H. Blake, Solute and Temperature Effects on the Strain Hardening Behavior of Mg-Zn Solid Solutions, Mater. Sci. Forum, 2008, 567, p 567–568Google Scholar
  9. 9.
    A.H. Blake and C.H. Caceres, Solid-Solution Hardening and Softening in Mg-Zn Alloys, Mater. Sci. Eng. A, 2008, 483, p 161–163CrossRefGoogle Scholar
  10. 10.
    L.W.F. Mackzie, F.J. Humphrey, G.W. Lorimer, Magnesium Alloys and Their Applications, K.U. Kainer Pub, Proc. 6th Int Conf., 2003.Google Scholar
  11. 11.
    T. Ryspaev, Z. Trojanová, O. Padalka, and V. Wesling, Microstructure of Superplastic QE22 and EZ33 Magnesium Alloys, Mater. Lett., 2008, 62(24), p 4041–4043CrossRefGoogle Scholar
  12. 12.
    K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig, Effect of Rare Earth Additions on Microstructure and Texture Development of Magnesium Alloy Sheets, Scripta Mater., 2010, 63, p 725–730CrossRefGoogle Scholar
  13. 13.
    J. Bohlen, M.R. Nuernberg, J.W. Senn, D. Letzig, and S.R. Agnew, The Texture and Anisotropy of Magnesium-Zinc-Rare Earth Alloy Sheets, Acta Mater., 2007, 55, p 2101–2112CrossRefGoogle Scholar
  14. 14.
    Y. Huang, W. Gan, K.U. Kainer, and N. Hort, Role of Multi-micro Alloying by Rare Earth Elements in Ductilization of Magnesium Alloys, J. Magnes. Alloys., 2014, 2, p 1–7CrossRefGoogle Scholar
  15. 15.
    A. Chapuis and J.H. Driver, Temperature Dependency of Slip and Twinning in Plane Strain Compressed Magnesium Single Crystals, Acta Mater., 2011, 59, p 1986–1994CrossRefGoogle Scholar
  16. 16.
    B. Selvarajou, B. Kondori, A.A. Benzerga, and S.P. Joshi, On Plastic Flow in Notched Hexagonal Close Packed Single Crystals, J. Mech. Phys. Solids., 2016, 94, p 273–297CrossRefGoogle Scholar
  17. 17.
    S.R. Agnew and J.F. Nie, Preface to the Viewpoint Set on: the Current State of Magnesium Alloy Science and Technology, Scr. Mater., 2010, 63, p 671–673CrossRefGoogle Scholar
  18. 18.
    A.A. Benzerga, J. Besson, and A. Pineau, Anisotropic Ductile Fracture, Part II: theory, Scripta Mater., 2004, 52, p 4639–4650Google Scholar
  19. 19.
    N. Zaludova, ”Mg-RE Alloys and Their Applications”, Matfyzpress, WDS’05 Proceedings of Contributed Papers, Part III, 2005.Google Scholar
  20. 20.
    R. Qu, P. Zhang, and Z. Zhang, Notch Effect of Materials: Strengthening or Weakening?, J. Mater. Sci. Technol., 2014, 30(6), p 599–608CrossRefGoogle Scholar
  21. 21.
    J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, and K. Higashi, The Activity of Non-basal Slip Systems and Dynamic Recovery at Room Temperature in Fine-Grained AZ31B Magnesium Alloys, Acta Mater., 2003, 51, p 2055–2065CrossRefGoogle Scholar
  22. 22.
    J. Koike, Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature, Metall. Mater. Trans. A., 2005, 36, p 1689–1696CrossRefGoogle Scholar
  23. 23.
    M. Alves and N. Jones, Influence of Hydrostatic Stress on Failure of Axisymmetric Notched Specimens, J. Mech. Phys. Solids., 1999, 47, p 643–667CrossRefGoogle Scholar
  24. 24.
    C. Yan, L. Ye, and Y.W. Mai, Effect of Constraint on Tensile Behavior of an AZ91 Magnesium Alloy, Mater. Lett., 2004, 58, p 3219–3221CrossRefGoogle Scholar
  25. 25.
    Z. Leng, J. Zhang, J. Sun, H. Shi, S. Liu, L. Zhang, M. Zhang, and R. Wu, Notch Tensile Behavior of Extruded Mg-Y-Zn Alloys Containing Long Period Stacking Ordered Phase, Mater. Des., 2014, 56, p 495–499CrossRefGoogle Scholar
  26. 26.
    B. Kondori and A.A. Benzerga, On the Notch Ductility of a Magnesium-Rare Earth Alloy, Mater. Sci. Eng. A, 2015, 647, p 74–83CrossRefGoogle Scholar
  27. 27.
    B. Kondori and A.A. Benzerga, Effect of Stress Triaxiality on the Flow and Fracture of Mg Alloy AZ31, Metall. Mater. Trans. A., 2014, 45, p 3292–3307CrossRefGoogle Scholar
  28. 28.
    B. Kondori and A.A. Benzerga, Fracture Strains, Damage Mechanisms and Anisotropy in a Magnesium Alloy across a Range of Stress Triaxialities, Exp. Mech., 2014, 54, p 493–499CrossRefGoogle Scholar
  29. 29.
    P.W. Bridgman, Studies in Large Plastic Flow and Fracture, McGraw- Hill, New York, 1952Google Scholar
  30. 30.
    R.M. Barnett, Twinning and the Ductility of Magnesium Alloys Part I:“Tension” Twins, Mater. Sci. Eng., A. 44 (1–2) (2007) 1–7.Google Scholar
  31. 31.
    G.E. Dieter, Mechanical Metallurgy, Mc Graw-Hill, New York, 1976Google Scholar
  32. 32.
    J.W. Hancock and A.C. Mackenzie, On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multi-axial Stress-States, J. Mech. Phys. Solids., 1976, 24, p 147–169CrossRefGoogle Scholar
  33. 33.
    A. Das, S. Sivaprasad, M. Tarafder, S.K. Das, and S. Tarafder, Analysis of Damage Accumulations in High Strength Low Alloy Steels under Monotonic Deformation, Procedia Eng., 2013, 55, p 786–792CrossRefGoogle Scholar
  34. 34.
    K.E. Puttick, Ductile fracture in metals, Philos. Mag., 1959, 4(44), p 964–969CrossRefGoogle Scholar
  35. 35.
    R.T. Qu, M. Calin, J. Eckert, and Z.F. Zhang, Metallic Glasses: Notch-Insensitive Materials, Scr. Mater., 2012, 66, p 733–736CrossRefGoogle Scholar
  36. 36.
    X.L. Zheng, H. Wang, M.S. Zheng, and F.H. Wang, Notch Strength and Notch Sensitivity of Materials, Science Press, Rockville, 2008Google Scholar
  37. 37.
    V. Jablokov, D.M. Goto, D.A. Koss, and J.B. McKirgan, Damage Accumulation and Failure of HY-100 steel, Mat. Sci. Eng. A, 2001, 302, p 197–205CrossRefGoogle Scholar
  38. 38.
    Sun Jun, Effect of Stress Triaxiality on Micro-mechanisms of Void Coalesence and Micro-fracture Ductility of Materials, Eng Fract Mech., 1991, 39(5), p 99–805Google Scholar
  39. 39.
    J.R. Rice and D.M. Tracey, On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids., 1969, 17, p 201–217CrossRefGoogle Scholar
  40. 40.
    W.T. Becker, R.J. Shipley, Failure Analysis and Prevention, ASM International, 2002.Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.St. Joseph Engineering CollegeMangaluruIndia
  2. 2.Ramaiah Institute of TechnologyBangaloreIndia
  3. 3.CEMILAC, Defence R&D OrganizationBangaloreIndia

Personalised recommendations