Investigation on Equal-Channel Angular Pressing-Induced Grain Refinement in an Aluminum Matrix Composite Reinforced with Al-Cu-Ti Metallic Glass Particles

  • M. R. Rezaei
  • S. G. ShabestariEmail author
  • S. H. Razavi


In the present study, a homogeneous ultrafine grain structure composite consisting of metallic glass particles reinforcements was developed by equal-channel angular pressing (ECAP) process. The microstructure of composite was characterized using x-ray diffraction (XRD), transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) techniques. The uniaxial compression test was used to determine the mechanical properties. The mechanisms of grain refinement during ECAP process were discussed based on the microstructural evolutions. A composite was successfully produced after four passes of ECAP, having an average grain size of 610 nm and compressive yield strength of 242 MPa. Also, the yield strength of composite after each pass was quantitatively estimated by considering all the effective strengthening mechanism. The findings showed that the dislocations strengthening mechanism with contribution of more than 50% plays a major role in strengthening the composite. There was a negligible gap between the experimental and theoretical values of yield strength for all ECAP pass numbers.


composite (metallic matrix) equal-channel angular pressing (ECAP) mechanical (static) metallic glasses microscopy (electron) strengthening mechanisms x-ray 



The authors are thankful to Center of Excellence for High Strength Alloys Technology (CEHSAT) of IUST University. They also gratefully acknowledge Dr. Stefan Zaefferer for performing EBSD measurements at Max Planck Institute for Iron Research.


  1. 1.
    K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155CrossRefGoogle Scholar
  2. 2.
    L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14CrossRefGoogle Scholar
  3. 3.
    L. Hou, T. Wang, R. Wu, J. Zhang, M. Zhang, A. Dong, B. Sun, S. Betsofen, and B. Krit, Microstructure and Mechanical Properties of Mg-5Li-1Al Sheets Prepared by Accumulative Roll Bonding, J. Mater. Sci. Technol., 2018, 34(2), p 317–323CrossRefGoogle Scholar
  4. 4.
    J. Jiang, J. Shi, Y. Yao, A. Ma, D. Song, D. Yang, J. Chen, and F. Lu, Dynamic Compression Properties of an Ultrafine-Grained Al-26wt.% Si Alloy Fabricated by Equal-Channel Angular Pressing, J. Mater. Eng. Perform., 2015, 24(5), p 2016–2024CrossRefGoogle Scholar
  5. 5.
    H. Pouraliakbar and M.R. Jandaghi, Mechanistic Insight into the Role of Severe Plastic Deformation and Post-deformation Annealing in Fracture Behavior of Al-Mn-Si Alloy, Mech. Mater., 2018, 122, p 145–158CrossRefGoogle Scholar
  6. 6.
    M.R. Jandaghi and H. Pouraliakbar, Elucidating the Microscopic Origin of Electrochemical Corrosion and Electrical Conductivity by Lattice Response to Severe Plastic Deformation in Al-Mn-Si Alloy, Mater. Res. Bull., 2018, 108, p 195–206CrossRefGoogle Scholar
  7. 7.
    H. Ashuri and A. Hassani, Characterization of Severely Deformed New Composites Fabricated by Powder Metallurgy Including a Stage of Mechanical Alloying, J. Alloys Compd., 2014, 617, p 444–454CrossRefGoogle Scholar
  8. 8.
    H. Pouraliakbar, M.R. Jandaghi, A. Heidarzadeh, and M.M. Jandaghi, Constrained Groove Pressing, Cold-Rolling, and Post-deformation Isothermal Annealing: Consequences of Their Synergy on Material Behavior, Mater. Chem. Phys., 2018, 206, p 85–93CrossRefGoogle Scholar
  9. 9.
    M. Baig, E. El-Danaf, and J.A. Mohammed, A Study on the Synergistic Effect of ECAP and Aging Treatment on the Mechanical Properties of AA6082, J. Mater. Eng. Perform., 2016, 25(12), p 5252–5261CrossRefGoogle Scholar
  10. 10.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRefGoogle Scholar
  11. 11.
    M. Balog, F. Simancik, O. Bajana, and G. Requena, ECAP vs. Direct Extrusion—Techniques for Consolidation of Ultra-Fine Al Particles, Mater. Sci. Eng. A, 2009, 504(1), p 1–7CrossRefGoogle Scholar
  12. 12.
    K. Xia and X. Wu, Back Pressure Equal Channel Angular Consolidation of Pure Al Particles, Scripta Mater., 2005, 53(11), p 1225–1229CrossRefGoogle Scholar
  13. 13.
    R. Lapovok, D. Tomus, and B.C. Muddle, Low-Temperature Compaction of Ti–6Al–4 V Powder Using Equal Channel Angular Extrusion with Back Pressure, Mater. Sci. Eng. A, 2008, 490(1–2), p 171–180CrossRefGoogle Scholar
  14. 14.
    P. Quang, Y.G. Jeong, S.C. Yoon, S.H. Hong, and H.S. Kim, Consolidation of 1vol.% Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing, J. Mater. Process. Technol., 2007, 187-188, p 318–320CrossRefGoogle Scholar
  15. 15.
    O.N. Senkov, D.B. Miracle, J.M. Scott, and S.V. Senkova, Equal Channel Angular Extrusion Compaction of Semi-amorphous Al85Ni10Y2.5La2.5 Alloy Powder, J. Alloys Compd., 2004, 365(1), p 126–133CrossRefGoogle Scholar
  16. 16.
    R. Lapovok, D. Tomus, and C. Bettles, Shear Deformation with Imposed Hydrostatic Pressure for Enhanced Compaction of Powder, Scr. Mater., 2008, 58(10), p 898–901CrossRefGoogle Scholar
  17. 17.
    W. Xu, X. Wu, T. Honma, S.P. Ringer, and K. Xia, Nanostructured Al–Al2O3 Composite Formed In Situ During Consolidation of Ultrafine Al Particles by Back Pressure Equal Channel Angular Pressing, Acta Mater., 2009, 57(14), p 4321–4330CrossRefGoogle Scholar
  18. 18.
    D. Zhou, W. Zeng, and D. Zhang, A Feasible Ultrafine Grained Cu Matrix Composite Microstructure for Achieving High Strength and High Electrical Conductivity, J. Alloys Compd., 2016, 682, p 590–593CrossRefGoogle Scholar
  19. 19.
    D. Dudina, K. Georgarakis, M. Aljerf, Y. Li, M. Braccini, A. Yavari, and A. Inoue, Cu-Based Metallic Glass Particle Additions to Significantly Improve Overall Compressive Properties of an Al Alloy, Compos. A Appl. Sci. Manuf., 2010, 41(10), p 1551–1557CrossRefGoogle Scholar
  20. 20.
    M.H. Lee, J.H. Kim, J.S. Park, J.C. Kim, W.T. Kim, and D.H. Kim, Fabrication of Ni–Nb–Ta Metallic glass Reinforced Al-Based Alloy Matrix Composites by Infiltration Casting Process, Scr. Mater., 2004, 50(11), p 1367–1371CrossRefGoogle Scholar
  21. 21.
    J. Qiao, H. Jia, and P.K. Liaw, Metallic Glass Matrix Composites, Mater. Sci. Eng. R Rep., 2016, 100, p 1–69CrossRefGoogle Scholar
  22. 22.
    M. Aljerf, K. Georgarakis, D. Louzguine-Luzgin, A. Le Moulec, A. Inoue, and A. Yavari, Strong and Light Metal Matrix Composites with Metallic Glass Particulate Reinforcement, Mater. Sci. Eng. A, 2012, 532, p 325–330CrossRefGoogle Scholar
  23. 23.
    X.M. Luo, Y. Zhou, J.Q. Lu, G.S. Yu, J.G. Lin, and W. Li, Microstructural and Mechanical Behavior of Zr-Based Metallic Glasses with the Addition of Nb, J. Mater. Sci., 2009, 44(16), p 4389–4393CrossRefGoogle Scholar
  24. 24.
    R. Zheng, H. Yang, T. Liu, K. Ameyama, and C. Ma, Microstructure and Mechanical Properties of Aluminum Alloy Matrix Composites Reinforced with Fe-Based Metallic Glass Particles, Mater. Des., 2014, 53, p 512–518CrossRefGoogle Scholar
  25. 25.
    Z. Wang, J. Tan, S. Scudino, B.A. Sun, R.T. Qu, J. He, K.G. Prashanth, W.W. Zhang, Y.Y. Li, and J. Eckert, Mechanical Behavior of Al-Based Matrix Composites Reinforced with Mg58Cu28.5Gd11Ag2.5 Metallic Glasses, Adv. Powder Technol., 2014, 25(2), p 635–639CrossRefGoogle Scholar
  26. 26.
    Q. Yang, Y. Zhang, H. Zhang, R. Zheng, W. Xiao, and C. Ma, Fabrication of Al-Based Composites Reinforced with In Situ Devitrified Al84Ni8.4Y4.8La1.8Co1 Particles by Hot Pressing Consolidation, J. Alloys Compd., 2015, 648, p 382–388CrossRefGoogle Scholar
  27. 27.
    S. Jayalakshmi and M. Gupta, Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer, New York, 2015CrossRefGoogle Scholar
  28. 28.
    M.R. Rezaei, S.H. Razavi, and S.G. Shabestari, Development of a Novel Al–Cu–Ti Metallic Glass Reinforced Al Matrix Composite Consolidated Through Equal Channel Angular Pressing (ECAP), J. Alloys Compd., 2016, 673, p 17–27CrossRefGoogle Scholar
  29. 29.
    M. Rezaei, S. Shabestari, and S. Razavi, Effect of ECAP Consolidation Temperature on the Microstructure and Mechanical Properties of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, J. Mater. Sci. Technol., 2017, 33, p 1031–1038CrossRefGoogle Scholar
  30. 30.
    M.H. Farshidi, M. Kazeminezhad, and H. Miyamoto, Severe Plastic Deformation of 6061 Aluminum Alloy Tube with Pre and Post Heat Treatments, Mater. Sci. Eng. A, 2013, 563, p 60–67CrossRefGoogle Scholar
  31. 31.
    G.K. Williamson and W.H. Hall, X-ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22–31CrossRefGoogle Scholar
  32. 32.
    B.E. Warren, X-ray Diffraction, Courier Corporation, New York, 1969Google Scholar
  33. 33.
    Y. Han, J. Li, G. Huang, Y. Lv, X. Shao, W. Lu, and D. Zhang, Effect of ECAP Numbers on Microstructure and Properties of Titanium Matrix Composite, Mater. Des., 2015, 75, p 113–119CrossRefGoogle Scholar
  34. 34.
    S. Amirkhanlou, M. Ketabchi, N. Parvin, A. Orozco-Caballero, and F. Carreño, Homogeneous and Ultrafine-Grained Metal Matrix Nanocomposite Achieved by Accumulative Press Bonding as a Novel Severe Plastic Deformation Process, Scr. Mater., 2015, 100, p 40–43CrossRefGoogle Scholar
  35. 35.
    D. Kuhlmann-Wilsdorf, H. Wilsdorf, and J. Wert, LEDS theory of workhardening stages and “planar” versus “distributed” glide, Scr. Metall. Mater., 1994, 31(6), p 729–734CrossRefGoogle Scholar
  36. 36.
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2012Google Scholar
  37. 37.
    S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, and M. Gupta, Development of Novel Mg–Ni 60 Nb 40 Amorphous Particle Reinforced Composites with Enhanced Hardness and Compressive Response, Mater. Des., 2014, 53, p 849–855CrossRefGoogle Scholar
  38. 38.
    M.R. Rezaei, S.G. Shabestari, and S.H. Razavi, Effect of ECAP Consolidation Process on the Interfacial Characteristics of Al-Cu-Ti Metallic Glass Reinforced Aluminum Matrix Composite, Compos. Interfaces, 2018, 25(8), p 669–679CrossRefGoogle Scholar
  39. 39.
    R. Valiev, I. Alexandrov, Y. Zhu, and T. Lowe, Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation, J. Mater. Res., 2002, 17(1), p 5–8CrossRefGoogle Scholar
  40. 40.
    R. Valiev, Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nat. Mater., 2004, 3(8), p 511–516CrossRefGoogle Scholar
  41. 41.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  42. 42.
    W.S. Miller and F.J. Humphreys, Strengthening Mechanisms in Particulate Metal Matrix Composites, Scr. Metall. Mater., 1991, 25(1), p 33–38CrossRefGoogle Scholar
  43. 43.
    A. Dorri Moghadam, E. Omrani, H. Lopez, L. Zhou, Y. Sohn, and P.K. Rohatgi, Strengthening in Hybrid Alumina-Titanium Diboride Aluminum Matrix Composites Synthesized by Ultrasonic Assisted Reactive Mechanical Mixing, Mater. Sci. Eng. A, 2017, 702, p 312–321CrossRefGoogle Scholar
  44. 44.
    F. Ma, J. Zhou, P. Liu, W. Li, X. Liu, D. Pan, W. Lu, D. Zhang, L. Wu, and X. Wei, Strengthening Effects of TiC Particles and Microstructure Refinement in In Situ TiC-Reinforced Ti Matrix Composites, Mater. Charact., 2017, 127, p 27–34CrossRefGoogle Scholar
  45. 45.
    L.C. Davis, C. Andres, and J.E. Allison, Microstructure and Strengthening of Metal Matrix Composites, Mater. Sci. Eng. A, 1998, 249(1), p 40–45CrossRefGoogle Scholar
  46. 46.
    M.R. Akbarpour, F.S. Torknik, and S.A. Manafi, Enhanced Compressive Strength of Nanostructured Aluminum Reinforced with SiC Nanoparticles and Investigation of Strengthening Mechanisms and Fracture Behavior, J. Mater. Eng. Perform., 2017, 26(10), p 4902–4909CrossRefGoogle Scholar
  47. 47.
    N. Hansen, Hall–Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51(8), p 801–806CrossRefGoogle Scholar
  48. 48.
    N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara, Stress–Strain Behavior of Ferrite and Bainite with Nano-precipitation in Low Carbon Steels, Acta Mater., 2015, 83, p 383–396CrossRefGoogle Scholar
  49. 49.
    S. Yoo, S. Han, and W. Kim, Strength and Strain Hardening of Aluminum Matrix Composites with Randomly Dispersed Nanometer-Length Fragmented Carbon Nanotubes, Scr. Mater., 2013, 68(9), p 711–714CrossRefGoogle Scholar
  50. 50.
    S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and V.K. Iyer, Effect of Strengthening Mechanisms on Cold Workability and Instantaneous Strain Hardening Behavior During Grain Refinement of AA 6061-10wt.% TiO2 Composite Prepared by Mechanical Alloying, J. Alloys Compd., 2010, 507(1), p 236–244CrossRefGoogle Scholar
  51. 51.
    I. Zuiko and R. Kaibyshev, Deformation Structures and Strengthening Mechanisms in an Al-Cu Alloy Subjected to Extensive Cold Rolling, Mater. Sci. Eng. A, 2017, 702, p 53–64CrossRefGoogle Scholar
  52. 52.
    S. Malopheyev and R. Kaibyshev, Strengthening Mechanisms in a Zr-Modified 5083 Alloy Deformed to High Strains, Mater. Sci. Eng. A, 2015, 620, p 246–252CrossRefGoogle Scholar
  53. 53.
    S. Malopheyev, V. Kulitskiy, and R. Kaibyshev, Deformation Structures and Strengthening Mechanisms in an Al Mg Sc Zr Alloy, J. Alloys Compd., 2017, 698, p 957–966CrossRefGoogle Scholar
  54. 54.
    J. Shen, Y. Li, F. Li, H. Yang, Z. Zhao, S. Kano, Y. Matsukawa, Y. Satoh, and H. Abe, Microstructural Characterization and Strengthening Mechanisms of a 12Cr-ODS Steel, Mater. Sci. Eng. A, 2016, 673, p 624–632CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)Narmak, TehranIran
  2. 2.School of EngineeringDamghan UniversityDamghanIran

Personalised recommendations