Influence of Substrate Bias Voltage on Corrosion and Wear Behavior of Physical Vapor Deposition CrN Coatings

  • Khalil AouadiEmail author
  • Brahim Tlili
  • Corinne Nouveau
  • Aurélien Besnard
  • Moez Chafra
  • Rania Souli


The objective of the present paper is to study the influence of the substrate bias voltage on the microstructure, composition, deposition rate, tribological and corrosion properties of CrN coatings obtained by DC magnetron sputtering on 90CrMoV8 steel and Si (100) substrates. The substrate bias voltage varied from 0 to − 700 V. The deposited films were characterized by SEM, XRD and potentiodynamic polarization. The wear behavior and coefficient of friction were determined and investigated after rotative tribometer tests. The results indicated that the substrate bias voltage considerably affected the intrinsic properties of the CrN films. Indeed, it significantly influenced the grain size and the root-mean-squared roughness which varied from 20 to 29 nm, and from 9 to 19 nm, respectively, when polarization changed from 0 to − 700 V. All the CrN coatings have a dense columnar structure and are well crystallized according to the XRD analyses. Nevertheless, it has been shown that the peaks intensity decreased by increasing the substrate bias voltage. By applying a substrate bias voltage, it was obvious that the friction behavior was enhanced, and the wear volume was decreased. Finally, the CrN coating obtained under a substrate bias voltage of − 500 V presented the best corrosion resistance and wear resistance probably due to its dense microstructure.


corrosion CrN coatings substrate bias voltage tribology wear 



The authors would like to thank the Regional Council of Burgundy for its financial support, Dr. Philippe JACQUET for the XRD analyses and Mr. Denis LAGADRILLERE for the SEM observations and EDS microanalyses.


  1. 1.
    A. Kusiak, J. Battaglia, and R. Marchal, Influence of CrN Coating in Wood Machining from Heat Flux Estimation in the Tool, Int. J. Therm. Sci., 2005, 44, p 289–301CrossRefGoogle Scholar
  2. 2.
    H.Y. Lee, J.G. Han, S.H. Baeg, and S.H. Yang, Structure and Properties of WC-CrAlN Superlattice Films by Cathodic Arc Ion Plating Process, Thin Solid Films, 2002, 421, p 414–420CrossRefGoogle Scholar
  3. 3.
    P. Gogolewski, J. Klimke, A. Krell, and P. Beer, Al2O3 Tools Towards Effective Machining of Wood-Based Materials, J. Mater. Proc. Technol., 2009, 209, p 2231–2236CrossRefGoogle Scholar
  4. 4.
    T. Polcar, N.M.G. Parreira, and R. Novák, Friction and Wear Behaviour of CrN Coating at Temperatures up to 500 °C, Surf. Coat. Technol., 2007, 201, p 5228–5235CrossRefGoogle Scholar
  5. 5.
    S. Inoue, F. Okada, and K. Koterazawa, CrN Films Deposited by RF Reactive Sputtering Using a Plasma Emission Monitoring Control, Vacuum, 2002, 66, p 227–231CrossRefGoogle Scholar
  6. 6.
    T. Hurkmans, D.B. Lewis, J.S. Brooks, and W.-D. Munz, Chromium Nitride Coatings Grown by Unbalanced Magnetron (UBM) and Combined Arc/Unbalanced Magnetron (ABSTM) Deposition Techniques, Surf. Coat. Technol., 1996, 87, p 192–199CrossRefGoogle Scholar
  7. 7.
    J.J. Lin, N. Zhang, W.D. Sproul, and J.J. Moore, A Comparison of the Oxidation Behavior of CrN Films Deposited Using Continuous DC, Pulsed DC and Modulated Pulsed Power Magnetron Sputtering, Surf. Coat. Technol., 2012, 206, p 3283–3290CrossRefGoogle Scholar
  8. 8.
    J. Lin, J.J. Moore, W.D. Sproul, B. Mishra, Z. Wu, and J. Wang, The Structure and Properties of Chromium Nitride Coatings Deposited Using DC, Pulsed DC and Modulated Pulse Power Magnetron Sputtering, Surf. Coat. Technol., 2010, 204, p 2230–2239CrossRefGoogle Scholar
  9. 9.
    Z.B. Zhao, Z.U. Rek, S.M. Yalisove, and J.C. Bilello, Phase Formation and Structure of Magnetron Sputtered Chromium Nitride Films: In Situ and Ex Situ Studies, Surf. Coat. Technol., 2004, 185, p 329–339CrossRefGoogle Scholar
  10. 10.
    E. Broszeit, C. Friedrich, and G. Berg, Deposition, Properties and Applications of PVD CrN Coatings, Surf. Coat. Technol., 1999, 115, p 9–16CrossRefGoogle Scholar
  11. 11.
    C. Nouveau, E. Jorand, C. Decès-Petit, C. Labidi, and M. Djouadi, Influence of Carbide Substrates on Tribological Properties of Chromium and Chromium Nitride Coatings: Application to Wood Machining, Wear, 2005, 258, p 157–165CrossRefGoogle Scholar
  12. 12.
    M. Oden, C. Ericsson, G. Hakansson, and H. Ljungcrantz, Microstructure and Mechanical Behavior of Arc-Evaporated Cr-N Coatings, Surf. Coat. Technol., 1999, 114, p 39–51CrossRefGoogle Scholar
  13. 13.
    X.S. Wan, S.S. Zhao, Y. Yang, J. Gong, and C. Sun, Effects of Nitrogen Pressure and Pulse Bias Voltage on the Properties of Cr-N Coatings Deposited by Arc Ion Plating, Surf. Coat. Technol., 2010, 204, p 1800–1810CrossRefGoogle Scholar
  14. 14.
    B. Warcholinski and A. Gilewicz, Effect of Substrate Bias Voltage on the Properties of CrCN and CrN Coatings Deposited by Cathodic Arc Evaporation, Vacuum, 2013, 90, p 145–150CrossRefGoogle Scholar
  15. 15.
    K. Valleti, A. Jyothirmayi, M. Ramakrishna, and S.V. Joshi, Influence of Substrate Temperature and Bias Voltage on Properties of Chromium Nitride Thin Films Deposited by Cylindrical Cathodic Arc Deposition, J. Vac. Sci. Technol., A, 2011, 29(5), p 051515CrossRefGoogle Scholar
  16. 16.
    C. Luo, H. Zhang, J. Shang, and S. Duo, Effect of Bias Voltage on Microstructure and Mechanical Properties of CrN Coatings Prepared by Single Target Magnetron Sputtering, Key Eng. Mater., 2016, 697, p 777–780CrossRefGoogle Scholar
  17. 17.
    Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, and H. Zhou, Influence of Substrate Bias Voltage on the Microstructure and Residual Stress of CrN Films Deposited by Medium Frequency Magnetron Sputtering, Mater. Sci. Eng., 2011, 176, p 850–854CrossRefGoogle Scholar
  18. 18.
    E. Eser, R.E. Ogilvie, and K.A. Taylor, The Effect of Bias on DC and RF Sputtering WCCo Coating, Thin Solid Films, 1980, 67, p 265–277CrossRefGoogle Scholar
  19. 19.
    H.-W. Chang, P.-K. Huang, J.-W. Yeh, A. Davison, C.-H. Tsau, and C.-C. Yangh, Influence of Substrate Bias, Deposition Temperature and Post-deposition Annealing on the Structure and Properties of Multi-principal-component (AlCrMoSiTi)N Coatings, Surf. Coat. Technol., 2008, 202, p 3360–3366CrossRefGoogle Scholar
  20. 20.
    C. Chang and C. Huang, Effect of Bias Voltage on Microstructure, Mechanical and Wear Properties of AlSiN Coatings Deposited by Cathodic Arc Evaporation, Thin Solid Films, 2011, 519, p 4923–4927CrossRefGoogle Scholar
  21. 21.
    Z. Wang, D. Zhang, P. Ke, X. Liu, and A. Wang, Influence of Substrate Negative Bias on Structure and Properties of TiN Coatings Prepared by Hybrid HIPIMS Method, J. Mater. Sci. Technol., 2015, 31, p 37–42CrossRefGoogle Scholar
  22. 22.
    M.R. Ardigo, M. Ahmed, and A. Besnard, Stoney Formula: Investigation of Curvature Measurements by Optical Profilometer, Adv. Mater. Res., 2014, 996, p 361–366CrossRefGoogle Scholar
  23. 23.
    K. Rahmoun, A. Iost, V. Keryvin, G. Guillemot, and N.E.C. Sari, A Multilayer Model for Describing Hardness Variations of Aged Porous Silicon Low-Dielectric-Constant Thin Films, Thin Solid Films, 2009, 518, p 213–221CrossRefGoogle Scholar
  24. 24.
    V.D. Ovcharenko, A.S. Kuprin, G.N. Tolmachova, I.V. Kolodiy, A. Gilewicz, O. Lupicka, J. Rochowicz, and B. Warcholinski, Deposition of Chromium Nitride Coatings Using Vacuum Arc Plasma in Increased Negative Substrate Bias Voltage, Vaccum, 2015, 117, p 27–34CrossRefGoogle Scholar
  25. 25.
    D. Tsai, S. Liang, Z. Chang, T. Lin, M. Shiao, and F. Shieu, Effects of Substrate Bias on Structure and Mechanical Properties of (TiVCrZrHf) N Coatings, Surf. Coat. Technol., 2012, 207, p 293–299CrossRefGoogle Scholar
  26. 26.
    A.J. Detor, A.M. Hodge, E. Chason, Y. Wang, H. Xu, M. Conyers, A. Nikroo, and A. Hamza, Stress and Microstructure Evolution in Thick Sputtered Films, Acta Mater., 2009, 57, p 2055–2065CrossRefGoogle Scholar
  27. 27.
    Y. Lv, L. Ji, X. Liu, H. Li, H. Zhou, and J. Chen, Influence of Substrate Bias Voltage on Structure and Properties of the CrAlN Films Deposited by Unbalanced Magnetron Sputtering, Appl. Surf. Sci., 2012, 258, p 3864–3870CrossRefGoogle Scholar
  28. 28.
    Q. Wang, S. Kwon, and K. Kim, Formation of Nanocrystalline Microstructure in Arc Ion Plated CrN Films, Trans. Nonferr. Met. Soc. China, 2011, 21, p 73–77CrossRefGoogle Scholar
  29. 29.
    C. Hsu, K. Chen, Z. Lin, C. Su, and C. Lin, Bias Effects on the Tribological Behavior of Cathodic Arc Evaporated CrTiAlN Coatings on AISI, 304 Stainless Steel, Thin Solid Films, 2010, 518, p 3825–3829CrossRefGoogle Scholar
  30. 30.
    J.J. Olaya, S.E. Rodil, S. Muhl, and E. Sanchez, Comparative Study of Chromium Nitride Coatings Deposited by Unbalanced and Balanced Magnetron Sputtering, Thin Solid Films, 2005, 474, p 119–126CrossRefGoogle Scholar
  31. 31.
    C.V. Thompson and R. Carel, Stress and Grain Growth in Thin Films, J. Mech. Phys. Solids, 1996, 44, p 657–673CrossRefGoogle Scholar
  32. 32.
    Q. Ma, L. Li, Y. Xu, J. Gu, L. Wang, and Y. Xu, Effect of Bias Voltage on TiAlSiN Nanocomposite Coatings Deposited by HiPIMS, Appl. Surf. Sci., 2017, 392, p 826–833CrossRefGoogle Scholar
  33. 33.
    E. Forniés, R.E. Galindo, O. Sánchez, and J.M. Albella, Growth of CrNx Films by DC Reactive Magnetron Sputtering at Constant N2/Ar Gas Flow, Surf. Coat. Technol., 2006, 200, p 6047–6053CrossRefGoogle Scholar
  34. 34.
    G.P. Zhang, G.J. Gao, X.Q. Wang, G.H. Lv, L. Zhou, H. Chen, H. Pang, and S.Z. Yang, Influence of Pulsed Substrate Bias on the Structure and Properties of Ti-Al-N Films Deposited by Cathodic Vacuum Arc, Appl. Surf. Sci., 2012, 258, p 7274–7279CrossRefGoogle Scholar
  35. 35.
    T. Lin, L. Wang, X. Wang, Y. Zhang, and Y. Yu, Influence of Bias Voltage on Microstructure and Phase Transition Properties of VO2 Thin Film Synthesized by HiPIMS, Surf. Coat. Technol., 2016, 305, p 110–115CrossRefGoogle Scholar
  36. 36.
    S.G. Wang, E.K. Tian, and C.W. Lung, Surface Energy of Arbitrary Crystal Plane of bcc and fcc Metals, J. Phys. Chem. Solids, 2000, 61, p 1295–1300CrossRefGoogle Scholar
  37. 37.
    Y.X. Wang, S. Zhang, J.-W. Lee, W.S. Lew, and B. Li, Influence of Bias Voltage on the Hardness and Toughness of CrAlN Coatings via Magnetron Sputtering, Surf. Coat. Technol., 2012, 206, p 5103–5107CrossRefGoogle Scholar
  38. 38.
    J. Pelleg, L.Z. Zevin, and S. Lungo, Reactive-Sputter-Deposited TiN Films on Glass Substrates, Thin Solid Films, 1991, 197, p 117–128CrossRefGoogle Scholar
  39. 39.
    F. Lomello, F. Sanchette, F. Schuster, M. Tabarant, and A. Billard, Influence of Bias Voltage on Properties of AlCrN Coatings Prepared by Cathodic Arc Deposition, Surf. Coat. Technol., 2013, 24, p 77–81CrossRefGoogle Scholar
  40. 40.
    F. Zhou, K. Chen, M. Wang, X. Xu, H. Meng, M. Yu, and Z. Dai, Friction and Wear Properties of CrN Coatings Sliding Against Si3N4 Balls in Water and Air, Wear, 2008, 65, p 1029–1037CrossRefGoogle Scholar
  41. 41.
    Y.N. Kok, P.E. Hovsepian, Q. Luo, D.B. Lewis, J.G. Wen, and I. Petrov, Influence of the Bias Voltage on the Structure and the Tribological Performance of Nanoscale Multilayer C/Cr PVD Coatings, Thin Solid Films, 2005, 475, p 219–226CrossRefGoogle Scholar
  42. 42.
    J. Romero, M.A. Gómez, J. Esteve, F. Montalà, L. Carreras, M. Grifol, and A. Lousa, CrAlN Coatings Deposited by Cathodic Arc Evaporation at Different Substrate Bias, Thin Solid Films, 2006, 515, p 113–117CrossRefGoogle Scholar
  43. 43.
    B. Biswas, Y. Purandare, I. Khan, and P.E. Hovsepian, Effect of Substrate Bias Voltage on Defect Generation and Their Influence on Corrosion and Tribological Properties of HIPIMS Deposited CrN/NbN Coatings, Surf. Coat. Technol., 2018, 344, p 383–393CrossRefGoogle Scholar
  44. 44.
    J.C. Ding, Q.M. Wang, Z.R. Liu, S. Jeong, T.F. Zhang, and K.H. Kim, Influence of Bias Voltage on the Microstructure, Mechanical and Corrosion Properties of AlSiN Films Deposited by HiPIMS Technique, J. Alloys Compd., 2019, 772, p 112–121CrossRefGoogle Scholar
  45. 45.
    L. Bait, L. Azzouz, N. Madaoui, and N. Saoula, Influence of Substrate Bias Voltage on the Properties Of TiO2 Deposited by Radio-Frequency Magnetron Sputtering on 304L for Biomaterials Applications, Appl. Surf. Sci., 2017, 395, p 72–77CrossRefGoogle Scholar
  46. 46.
    D. Jianxin, W. Fengfang, L. Yunsong, X. Youqiang, and L. Shipeng, Erosion Wear of CrN, TiN, CrAlN, and TiAlN PVD Nitride Coatings, Int. J. Refract. Met. Hard Mater., 2012, 35, p 10–16CrossRefGoogle Scholar
  47. 47.
    C. He, J. Zhang, G. Ma, Z. Du, J. Wang, and D. Zhao, Influence of Bias Voltage on Structure, Mechanical and Corrosion Properties of Reactively Sputtered Nanocrystalline TiN Films, J. Iron Steel Res. Inter., 2017, 24, p 1223–1230CrossRefGoogle Scholar
  48. 48.
    S.G. Hong, S.H. Kwon, S.W. Kang, and K.H. Kim, Influence of Substrate Bias Voltage on Structure and Properties of Cr-Mo-Si-N Coatings Prepared by a Hybrid Coating System, Surf. Coat. Technol., 2008, 203, p 624–627CrossRefGoogle Scholar
  49. 49.
    N. Liu, L. Dong, X. Li, D. Li, R. Wan, and H. Gu, Controllable Substrate Bias Voltages Effectively Tailoring Nanocomposite Nb-B-Al-O Film Properties, J. Alloys Compd., 2015, 636, p 363–367CrossRefGoogle Scholar
  50. 50.
    H. Hsueh, W. Shen, M. Tsai, and J. Yeh, Effect of Nitrogen Content and Substrate Bias on Mechanical and Corrosion Properties of High-Entropy Films (AlCrSiTiZr) 100−xNx, Surf. Coat. Technol., 2012, 206, p 4106–4112CrossRefGoogle Scholar
  51. 51.
    M. Flores, L. Huerta, R. Escamilla, E. Andrade, and S. Muhl, Effect of Substrate Bias Voltage on Corrosion of TiN/Ti Multilayers Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2007, 253, p 7192–7196CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Khalil Aouadi
    • 1
    • 3
    Email author
  • Brahim Tlili
    • 2
  • Corinne Nouveau
    • 1
  • Aurélien Besnard
    • 1
  • Moez Chafra
    • 3
  • Rania Souli
    • 2
  1. 1.Arts et Metiers ParisTech, LaBoMaP, Rue Porte de ParisClunyFrance
  2. 2.Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Mécanique Appliquée et Ingénierie (LR-MAI), Université de Tunis El-ManarTunis, EL ManarTunisia
  3. 3.Laboratoire de recherche Structures et Mécanique APpliquée (LASMAP), Ecole Polytechnique de Tunisie, Université de CarthageLa MarsaTunisia

Personalised recommendations