Advertisement

An Investigation of the Corrosion Mechanisms of Cu-7Ni-3Al-1Fe-1Mn Alloy in Chloride-Containing Environment

  • Ran Yang
  • Jiuba WenEmail author
  • Yanjun Zhou
  • Kexing SongEmail author
  • Yucong Zheng
Article
  • 20 Downloads

Abstract

The corrosion mechanisms of Cu-7Ni-3Al-1Fe-1Mn (wt.%) alloy in a 3.5% NaCl solution are investigated through a multi-analytical approach. The formation, growth and stable corrosion stage of the stable corrosion layer are reflected by the change of electrochemical response with time. EDS and GI-XRD results show the presence of Cu2(OH)3Cl and Cu2O that are the main corrosion products, with the former predominantly present at topmost corrosion layer, and Cu2O is mainly located in the inner part, followed by aluminum oxide closer to the alloy substrate.

Keywords

alloy copper EIS interfaces passive films SEM 

Notes

Acknowledgments

This work was supported by the National Key R&D Program of China under Grant No. 2016YFB0301400.

References

  1. 1.
    B. Hou, X. Li, X. Ma, C. Du, D. Zhang, M. Zheng, W. Xu, D. Lu, and F. Ma, The Cost of Corrosion in China, NPJ Mater. Degrad., 2017, 1(1), p p4CrossRefGoogle Scholar
  2. 2.
    G.E. Mcguire, Analysis of Protective Oxide Films on Copper-Nickel Alloys by Auger Spectroscopy, J. Electrochem. Soc., 1978, 125(11), p p1801CrossRefGoogle Scholar
  3. 3.
    A.M. Alfantazi, T.M. Ahmed, and D. Tromans, Corrosion Behavior of Copper Alloys in Chloride Media, Mater. Des., 2009, 30(7), p 2425–2430CrossRefGoogle Scholar
  4. 4.
    G. Kear, B.D. Barker, and K. Stokes, Electrochemical Corrosion Behaviour of 90-10 Cu-Ni Alloy in Chloride-Based Electrolytes, J. Appl. Electrochem., 2004, 34(7), p 659–669CrossRefGoogle Scholar
  5. 5.
    W.A. Badawy, M.M. El-Rabiee, and N.H. Helal, Effect of Nickel Content on the Electrochemical Behavior of Cu-Al-Ni Alloys in Chloride Free Neutral Solutions, Electrochim. Acta, 2011, 56(2), p 913–918CrossRefGoogle Scholar
  6. 6.
    S.C. Vanithakumari, P. Yadavalli, and R.P. George, Development of Hydrophobic Cupronickel Surface with Biofouling Resistance by Sandblasting, Surf. Coat. Technol., 2018, 345, p 89–95CrossRefGoogle Scholar
  7. 7.
    X.C. Huang, H. Lu, and D.Y. Li, Understanding the Corrosion Behavior of Isomorphous Cu-Ni Alloy from Its Electron Work Function, Mater. Chem. Phys., 2016, 173, p 238–245CrossRefGoogle Scholar
  8. 8.
    R.C.N. Liberto, R. Magnabosco, and N. Alonso-Falleiros, Selective Corrosion of 550 °C Aged Cu10Ni-3Al-13Fe Alloy in NaCl Aqueous Solution, Corros. Sci., 2011, 53(5), p 1976–1982CrossRefGoogle Scholar
  9. 9.
    Q. Lei, Z. Li, and C. Dai, Effect of Aluminum on Microstructure and Property of Cu-Ni-Si Alloys, Mater. Sci. Eng. A, 2013, 572(6), p 65–74CrossRefGoogle Scholar
  10. 10.
    Y.R. Cho, Y.H. Kim, and T.D. Lee, Precipitation Hardening and Recrystallization in Cu-4% to 7% Ni-3% Al Alloys, J. Mater. Sci., 1991, 26(11), p 2879–2886CrossRefGoogle Scholar
  11. 11.
    R. Yang, J.B. Wen, Y.J. Zhou, K.X. Song, and Z.C. Song, Effect of Al Element on the Microstructure and Properties of Cu-Ni-Fe-Mn Alloys, Materials, 2018, 11(9), p p1777CrossRefGoogle Scholar
  12. 12.
    W.A. Badawy, K.M. Ismail, and A.M. Fathi, Effect of Ni Content on the Corrosion Behavior of Cu-Ni Alloys in Neutral Chloride Solutions, Electrochim. Acta, 2005, 50(18), p 3603–3608CrossRefGoogle Scholar
  13. 13.
    T. Chang, G. Herting, and Y. Jin, The Golden Alloy Cu5Zn5Al1Sn: Patina Evolution in Chloride-Containing Atmospheres, Corros. Sci., 2018, 133, p 190–203CrossRefGoogle Scholar
  14. 14.
    T. Chang, I.O. Wallinder, and Y. Jin, The Golden Alloy Cu-5Zn-5Al-1Sn: A Multi-analytical Surface Characterization, Corros. Sci., 2018, 131, p 94–103CrossRefGoogle Scholar
  15. 15.
    K.A. Christofidou, K.J. Robinson, and P.M. Mignanelli, The Effect of Heat Treatment on Precipitation in the Cu-Ni-Al Alloy Hiduron®; 130, Mater. Sci. Eng. A, 2017, 692, p 192–198CrossRefGoogle Scholar
  16. 16.
    H. Nady, N.H. Helal, and M.M. El-Rabiee, The Role of Ni Content on the Stability of Cu-Al-Ni Ternary Alloy in Neutral Chloride Solutions, Mater. Chem. Phys., 2012, 134(2-3), p 945–950CrossRefGoogle Scholar
  17. 17.
    H. Yao, J. Wen, and Y. Xiong, Extrusion Temperature Impacts on Biometallic Mg-2.0Zn-0.5Zr-3.0Gd (wt.%) Solid-Solution Alloy, J. Alloys Compd., 2018, 739, p 468–480CrossRefGoogle Scholar
  18. 18.
    X. Ma, L. Xu, and W. Wang, Synthesis and Characterisation of Composite Nanoparticles of Mesoporous Silica Loaded with Inhibitor for Corrosion Protection of Cu-Zn Alloy, Corros. Sci., 2017, 120, p 139–147CrossRefGoogle Scholar
  19. 19.
    W. Wei, G. Chen, and J. Wang, Microstructure and Tensile Properties of Ultrafine Grained Copper Processed by Equal-Channel Angular Pressing, Rare Met., 2006, 25(6), p 697–703CrossRefGoogle Scholar
  20. 20.
    C.I.S. Santos, M.H. Mendonça, and I.T.E. Fonseca, Corrosion of Brass in Natural and Artificial Seawater, J. Appl. Electrochem., 2008, 38(5), p 627–635CrossRefGoogle Scholar
  21. 21.
    H.P. Lee, Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media, J. Electrochem. Soc., 1986, 133(10), p 2035–2043CrossRefGoogle Scholar
  22. 22.
    J. Crousier and A. Beccaria, Behaviour of Cu-Ni Alloys in Natural Sea Water and NaCl Solution, Mater. Corros., 1990, 41(4), p 185–189CrossRefGoogle Scholar
  23. 23.
    S.N. Saud, E. Hamzah, and T. Abubakar, Influence of Silver Nanoparticles Addition on the Phase Transformation, Mechanical Properties and Corrosion Behaviour of Cu-Al-Ni Shape Memory Alloys, J. Alloys Compd., 2014, 612(6), p 471–478CrossRefGoogle Scholar
  24. 24.
    G. Kear, B.D. Barker, and F.C. Walsh, Electrochemical Corrosion of Unalloyed Copper in Chloride Media—A Critical Review, Corros. Sci., 2004, 46(1), p 109–135CrossRefGoogle Scholar
  25. 25.
    H.D. Speckmann, S. Haupt, and H.H. Strehblow, A Quantitative Surface Analytical Study of Electrochemically-Formed Copper Oxides by XPS and X-Ray-Induced Auger Spectroscopy, Surf. Interface Anal., 1988, 11(3), p 148–155CrossRefGoogle Scholar
  26. 26.
    M. Hafner, W. Burgstaller, and A.I. Mardare, Aluminium-Copper-Nickel Thin Film Compositional Spread: Nickel Influence on Fundamental Alloy Properties and Chemical Stability of Copper, Thin Solid Films, 2015, 580(2), p 36–44CrossRefGoogle Scholar
  27. 27.
    M. Ascencio, M. Pekguleryuz, and S. Omanovic, An Investigation of the Corrosion Mechanisms of WE43 Mg Alloy in a Modified Simulated Body Fluid Solution: The Influence of Immersion Time, Corros. Sci., 2014, 87(5), p 489–503CrossRefGoogle Scholar
  28. 28.
    Q.N. Song, N. Xu, Y.F. Bao, Y.F. Jiang, W. Gu, Z. Yang, Y.G. Zheng, and Y.X. Qiao, Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution, J. Mater. Eng. Perform., 2017, 26(10), p 1–9CrossRefGoogle Scholar
  29. 29.
    J.A. Wharton, R.C. Barik, and G. Kear, The Corrosion of Nickel-Aluminium Bronze in Seawater, Corros. Sci., 2005, 47(12), p 3336–3367CrossRefGoogle Scholar
  30. 30.
    I. Constantinides, A. Adriaens, and F. Adams, Surface Characterization of Artificial Corrosion Layers on Copper Alloy Reference Materials, Appl. Surf. Sci., 2002, 189(1-2), p 90–101CrossRefGoogle Scholar
  31. 31.
    B. Yin, Y. Yin, and Y. Lei, Experimental and Density Functional Studies on the Corrosion Behavior of the Copper-Nickel-Tin Alloy, Chem. Phys. Lett., 2011, 509(4-6), p 192–197CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.Collaborative Innovation Center of Nonferrous Metals Henan ProvinceLuoyangChina
  3. 3.School of Medical Technology and EngineeringHenan University of Science and TechnologyLuoyangChina

Personalised recommendations