Advertisement

Brazing Oxide Dispersion-Strengthened Fe-Based Steels with a Cu-Based Filler Metal

  • Xiaoqiang Li
  • Jingmao LiEmail author
  • Xiuhui Diao
  • Zhun Cheng
  • Zhongli Dong
  • Jingpei Ao
  • Dezhi Zhu
Article
  • 13 Downloads

Abstract

In a search for a high-performance joint, a Cu-based filler was developed to braze MGH956 alloy (Fe-20Cr-5Al-0.5Ti-0.5Y2O3, wt.%), and a reliable joint was obtained by assembly and welding under a high-purity argon atmosphere. The optimal joint was obtained by brazing at 1050 °C for 20 min. The microstructure, microhardness and tensile strength were investigated. The microhardness distribution across the joint was evaluated. The tensile strength of the joint mainly decreased linearly with an increase in test temperature in the range of room temperature (RT) to 700 °C. An interesting phenomenon was found: The joint strength at RT was 557.8 MPa and reached approximately 75% of the value of the base material. However, at 500 °C, the joint (428.7 MPa) achieved 95% of the strength of the base material (450.7 MPa). The fractography of a specimen tensile-tested at 500 °C indicates a higher percentage of intergranular fracture than that at RT.

Keywords

brazing Cu-based filler MGH956 alloy oxide dispersion-strengthened alloy 

Notes

Acknowledgments

This topic of research was financed by the Research Project of Special Furnishment and Part (Grant No. XZJQ-B1120680), the Technology Program of Southern Power Grid Corporation (Grant No. GDKJ00000081) and the Research Foundation of State Key Laboratory of Advanced Welding and Joining (Grant No. AWJ-Z14-02).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Ukai, S. Ohtsuka, T. Kaito, H. Sakasegawa, N. Chikata, S. Hayashi, and S. Ohnuki, High-Temperature Strength Characterization of Advanced 9Cr-ODS Ferritic Steels, Mater. Sci. Eng. A Struct., 2009, 510–511, p 115–120CrossRefGoogle Scholar
  2. 2.
    A. Chauhan, D. Litvinov, and J. Aktaa, High Temperature Tensile Properties and Fracture Characteristics of Bimodal 12Cr-ODS Steel, J. Nucl. Mater., 2016, 468, p 1–8CrossRefGoogle Scholar
  3. 3.
    Q. Zhu, Y. Lei, Y. Wang, W. Huang, B. Xiao, and Y. Ye, Effects of Arc-Ultrasonic on Pores Distribution and Tensile Property in TIG Welding Joints of MGH956 Alloy, Fusion Eng. Des., 2014, 89, p 2964–2970CrossRefGoogle Scholar
  4. 4.
    L. Commin, M. Rieth, V. Widak, B. Dafferner, S. Heger, H. Zimmermann, E. Materna-Morris et al., Characterization of ODS (Oxide Dispersion Strengthened) Eurofer/Eurofer Dissimilar Electron Beam Welds, J. Nucl. Mater., 2013, 442, p S552–S556CrossRefGoogle Scholar
  5. 5.
    C. Chen, A. Richter, R. Kögler, and L. Wu, Dual-Beam Irradiation of Friction Stir Spot Welding of Nanostructured Ferritic Oxide Dispersion Strengthened Alloy, J. Alloy. Compd., 2012, 536, p S194–S199CrossRefGoogle Scholar
  6. 6.
    B.W. Baker, T.R. McNelley, and L.N. Brewer, Grain Size and Particle Dispersion Effects on the Tensile Behavior of Friction Stir Welded MA956 Oxide Dispersion Strengthened Steel from Low to Elevated Temperatures, Mater. Sci. Eng. A Struct., 2014, 589, p 217–227CrossRefGoogle Scholar
  7. 7.
    W. Han, A. Kimura, N. Tsuda, H. Serizawa, D. Chen, H. Je, H. Fujii et al., Effects of Mechanical Force on Grain Structures of Friction Stir Welded Oxide Dispersion Strengthened Ferritic Steel, J. Nucl. Mater., 2014, 455, p 46–50CrossRefGoogle Scholar
  8. 8.
    L.N. Brewer, M.S. Bennett, B.W. Baker, E.A. Payzant, and L.M. Sochalski-Kolbus, Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956, Mater. Sci. Eng. A Struct., 2015, 647, p 313–321CrossRefGoogle Scholar
  9. 9.
    B.A. Kalin, V.T. Fedotov, O.N. Sevrjukov, A.N. Kalashnikov, A.N. Suchkov, A. Moeslang, and M. Rohde, Development of Brazing Foils to Join Monocrystalline Tungsten Alloys with ODS-EUROFER Steel, J. Nucl. Mater., 2007, 367–370, p 1218–1222.  https://doi.org/10.1016/j.jnucmat.2007.03.222 CrossRefGoogle Scholar
  10. 10.
    J. Reiser, P. Norajitra, and R. Ruprecht, Numerical Investigation of a Brazed Joint Between W-1%La2O3 and ODS EUROFER Components, Fusion Eng. Des., 2008, 83, p 1126–1130CrossRefGoogle Scholar
  11. 11.
    N. Oono, S. Noh, N. Iwata, T. Nagasaka, R. Kasada, and A. Kimura, Microstructures of Brazed and Solid-State Diffusion Bonded Joints of Tungsten with Oxide Dispersion Strengthened Steel, J. Nucl. Mater., 2011, 417, p 253–256.  https://doi.org/10.1016/j.jnucmat.2011.04.004 CrossRefGoogle Scholar
  12. 12.
    R.K. Saha, S. Wei, and T.I. Khan, A Comparison of Microstructural Developments in TLP Diffusion Bonds Made Using ODS Ni Alloy, Mater. Sci. Eng. A Struct., 2005, 406, p 319–327.  https://doi.org/10.1016/j.msea.2005.07.002 CrossRefGoogle Scholar
  13. 13.
    H. Noto, S. Ukai, and S. Hayashi, Transient Liquid-Phase Bonding of ODS Steels, J. Nucl. Mater., 2011, 417, p 249–252CrossRefGoogle Scholar
  14. 14.
    H. Noto, R. Kasada, A. Kimura, and S. Ukai, Grain Refinement of Transient Liquid Phase Bonding Zone Using ODS Insert Foil, J. Nucl. Mater., 2013, 442, p S567–S571CrossRefGoogle Scholar
  15. 15.
    T.I. Khan and E.R. Wallach, Transient Liquid-Phase Bonding of Ferritic Oxide Dispersion Strengthened Superalloy MA957 Using a Conventional Nickel Braze and a Novel Iron-Base Foil, J. Mater. Sci., 1995, 30, p 10CrossRefGoogle Scholar
  16. 16.
    T.I. Khan and A. Al-Badri, Reactive Brazing of Ceria to an ODS Ferritic Stainless Steel, J. Mater. Sci., 2003, 38, p 6Google Scholar
  17. 17.
    R.K. Roy, S. Singh, M.K. Gunjan, A.K. Panda, and A. Mitra, Joining of 304SS and Pure Copper by Rapidly Solidified Cu-Based Braze Alloy, Fusion Eng. Des., 2011, 86, p 452–455.  https://doi.org/10.1016/j.fusengdes.2011.04.002 CrossRefGoogle Scholar
  18. 18.
    H. Ates, M. Turker, and A. Kurt, Effect of Friction Pressure on the Properties of Friction Welded MA956 Iron-Based Superalloy, Mater. Des., 2007, 28, p 948–953CrossRefGoogle Scholar
  19. 19.
    K. Ishida and T. Nishizawa, The Co-Mn (Cobalt-Manganese) System, J. Phase Equilibria Diffus., 1990, 11, p 13Google Scholar
  20. 20.
    W. Zhang, Y. Du, L. Zhang, H. Xu, S. Liu, and L. Chen, Atomic Mobility, Diffusivity and Diffusion Growth Simulation for FCC Cu–Mn–Ni Alloys, Calphad, 2011, 35, p 367–375.  https://doi.org/10.1016/j.calphad.2011.04.009 CrossRefGoogle Scholar
  21. 21.
    K.P. Gupta, The Mn-Ni-Si (Manganese-Nickel-Silicon) System, J. Phase Equilibria Diffus., 2006, 27, p 529–534.  https://doi.org/10.1361/154770306x136520 CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Xiaoqiang Li
    • 1
  • Jingmao Li
    • 1
    Email author
  • Xiuhui Diao
    • 1
  • Zhun Cheng
    • 1
  • Zhongli Dong
    • 2
  • Jingpei Ao
    • 1
  • Dezhi Zhu
    • 1
  1. 1.National Engineering Research Center of Near-Net-Shape Forming for Metallic MaterialsSouth China University of TechnologyGuangzhouChina
  2. 2.Electric Power Research InstituteGuangdong Power Grid CorporationGuangzhouChina

Personalised recommendations