Microstructural and Mechanical Characterization of Directionally Solidified Conventional and Nb-Modified Mar-M247 Superalloy

  • A. M. S. CostaEmail author
  • E. S. N. Lopes
  • R. J. Contieri
  • R. Caram
  • R. Baldan
  • G. E. Fuchs
  • C. A. Nunes


This study analyzes the effects of replacing Ta by Nb (at.% basis) in the phase transformation temperatures, Scheil solidification behavior, and microstructural mechanical features of a Nb-modified as well as conventional Mar-M247 superalloys. Both alloys were directionally solidified at a withdrawal rate of 18 cm/h under a thermal gradient of about 80 °C/cm. DSC results were compared to thermodynamic simulations of phase transformation temperatures and showed a good correlation. The replacement of Ta by Nb has not altered the solidification path of Mar-M247, keeping the sequence L → L + γ → L + γ + MC → L + γ + MC + γ/γ′ eutectic. Due to the segregation of Hf and Zr to the very last liquid to solidify, a low melting point γ/Ni5(Hf,Zr) constituent was observed. The as-solidified microstructures of both Mar-M247(Nb) and Mar-M247 were constituted of columnar dendrites of gamma matrix (γ) phase with cuboidal gamma-prime (γ′) precipitates. In addition, γ/γ′-eutectic was observed in the interdendritic region along with MC carbides in blocky, script (blocky dendritic), needle-like and fine nodular morphologies. Both alloys contained about 1.5 vol.% of MC carbides. The MC carbides in Mar-M247(Nb) and Mar-M247 are, respectively, Nb-rich and Ta-rich, with only a limited amount of Hf being detected in the MC phase. The yield stress of Nb-modified Mar-M247 showed higher values up to 750 °C. For higher temperatures, above 800 °C, a conventional Mar-M247 presented a higher value of yield stress.


Mar-M247 superalloy Nb-modified Mar-M247 thermodynamic simulation 



The authors acknowledge CAPES (Brasília, Brazil) for funding and supporting this project (Program RIPS/Pró-Engenharias).


  1. 1.
    E.W. Andersson, Factors Affecting the Supply of Strategic Raw Materials with Particular Reference to the Aerospace Manufacturing Industry, Durham Univ (United Kingdom) Dept of Geography, 1984.Google Scholar
  2. 2.
    J.R. Stephens, R.L. Dreshfield, and M.W. Nathal, Replacing Critical and Strategic Refractory Metal Elements in Nickel-Base Superalloys, [NASA’s COSAM program], 1983.Google Scholar
  3. 3.
    J.P. Collier, P.W. Keefe, and J.K. Tien, The Effects of Replacing the Refractory Elements W, Nb, and Ta with Mo in Nickel-Base Superalloys on Microstructural, Microchemistry, and Mechanical Properties, Metall. Trans. A, 1986, 17(April), p 651–661CrossRefGoogle Scholar
  4. 4.
    M.V. Nathal and L.J. Ebert, Influence of Composition on the Microstructure and Mechanical Properties of a Nickel-Base Superalloy Single Crystal, Superalloys, 1984, 1984, p 125–133Google Scholar
  5. 5.
    Z. Meng, G. Sun, and M. Li, The Strengthening Effect of Tantalum in Nickel-base Superalloys, Superalloys, 1984, 1984, p 563–572Google Scholar
  6. 6.
    J.K. Tien, J.P. Collier, and G. Vignoul, “The Role of Niobium and Other Refractory Elements in Superalloys,” Superalloys 718—Metallurgy and Applications, E.A. Loria, Ed., The Minerals, Metals and Materials Society, 1989, p 553–566.Google Scholar
  7. 7.
    J.R. Brinegar, J.R. Mihalisin, and J. VanderSluis, The Effects of Tantalum for Columbium Substitutions in Alloy 713C, Superalloys, 1980, 1984, p 53–61Google Scholar
  8. 8.
    J.R. Kattus, Nickel Base Alloys (MAR-M-247), Aerospace Structural Metals, 1999, p 1–8.Google Scholar
  9. 9.
    K. Harris, G.L. Erickson, and R.E. Schwer, MAR M 247 Derivations—CM 247 LC DS Alloy CMSX Single Crystal Alloys Properties & Performance, Superalloys, 1984, 1984, p 221–230Google Scholar
  10. 10.
    T.E. Strangman, G.S. Hoppin, III, C.M. Phipps, R.E. Schwer, and K. Harris, Development of Exothermically Cast Single-Crystal Mar-M 247 and Derivative Alloys, Superalloys, 1980, 1980, p 215–224Google Scholar
  11. 11.
    C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, NIH Image to ImageJ: 25 Years of Image Analysis, Nat. Methods, Nature Publishing Group, 2012, 9(7), p 671–675. CrossRefGoogle Scholar
  12. 12.
    FIZ Karlsruhe, Inorganic Crystal Structure Database (ICSD) Scientific Manual, 2008, p 1–14.Google Scholar
  13. 13.
    “TTNI8: Thermotech Ni-Based Superalloys Database-Version 8, Thermo-Calc Software, Accessed 03-01-2018.Google Scholar
  14. 14.
    U. Kattner, The Thermodynamic Modeling of Multicomponent Phase Equilibria, JOM, 1997, 12, p 14–19CrossRefGoogle Scholar
  15. 15.
    S. Milenkovic, I. Sabirov, and J. Llorca, Effect of the Cooling Rate on Microstructure and Hardness of MAR-M247 Ni-Based Superalloy, Mater. Lett., Elsevier B.V., 2012, 73, p 216–219,
  16. 16.
    J. Chen, J.H. Lee, C.Y. Jo, S.J. Choe, and Y.T. Lee, MC Carbide Formation in Directionally Solidified MAR-M247 LC Superalloy, Mater. Sci. Eng. A, 1998, 247, p 113–125CrossRefGoogle Scholar
  17. 17.
    Z. Weiguo, L. Lin, and F. Hengzhi, Effect of Cooling Rate on MC Carbide in Directionally Solidified Nickel-Based Superalloy under High Thermal Gradient, CHINA FOUNDRY, 2012, 9(1), p 1–14Google Scholar
  18. 18.
    Z.H. Yu, L. Liu, X.B. Zhao, W.G. Zhang, J. Zhang, and H.Z. Fu, Effect of Solidification Rate on MC-Type Carbide Morphology in Single Crystal Ni-Base Superalloy AM3, Trans. Nonferrous Met. Soc. China (English Ed., The Nonferrous Metals Society of China, 2010, 20(10), p 1835–1840,
  19. 19.
    K. Zhao, L.H. Lou, Y.H. Ma, and Z.Q. Hu, Effect of Minor Niobium Addition on Microstructure of a Nickel-Base Directionally Solidified Superalloy, Mater. Sci. Eng. A, 2008, 476(1–2), p 372–377CrossRefGoogle Scholar
  20. 20.
    Y. Murata, K. Suga, and N. Yukawa, Effect of Transition Elements on the Properties of MC Carbides in IN-100 Nickel-Based Superalloy, J. Mater. Sci., 1986, 21(10), p 3653–3660CrossRefGoogle Scholar
  21. 21.
    S. Miura, T. Suzuki, and Y. Mishima, Liquidus and Solidus Temperatures of Ni-Solid Solution in Ni-Al-X (X: Ti, Zr, and Hf) Ternary Systems, J. Phase Equilibria Diffus., 1999, 20(3), p 193–198CrossRefGoogle Scholar
  22. 22.
    A. Baldan, Microsegregation of Cast DS200 + Hf Single Crystal, J. Mater. Sci., 1990, 25(9), p 4054–4059CrossRefGoogle Scholar
  23. 23.
    R. Sellamuthu and A.F. Giamei, Measurement of Segregation and Distribution Coefficients in Mar-M200 and Hafnium-Modified Mar-M200 Superalloys., Metall. Trans. A, Phys. Metall. Mater. Sci., 1986, 17 A(3), p 419–428.Google Scholar
  24. 24.
    Z.W. Lian, J.J. Yu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Temperature Dependence of Tensile Behavior of Ni-Based Superalloy M951, Mater. Sci. Eng. A, 2008, 489(1–2), p 227–233CrossRefGoogle Scholar
  25. 25.
    Y. Xu, Q. Ran, J. Li, J. Peng, X. Xiao, X. Cao, and G. Jia, Strengthening Behavior of Nb in the Modified Nimonic 80A, Mater. Sci. Eng. A, 2013, 569, p 27–40. CrossRefGoogle Scholar
  26. 26.
    E. Guo, Z. Han, and S. Yu, Influence of Niobium on Steady-State Creep Behaviour of Ni-Cr-Ti Type Wrought Superalloy, Superalloys, 1984, 1984, p 583–590Google Scholar
  27. 27.
    S.L. Shang, C.L. Zacherl, H.Z. Fang, Y. Wang, Y. Du, and Z.K. Liu, Effects of Alloying Element and Temperature on the Stacking Fault Energies of Dilute Ni-Base Superalloys, J. Phys. Condens. Matter, 2012, 24(50).Google Scholar
  28. 28.
    B. Gan and S. Tin, Assessment of the Effectiveness of Transition Metal Solutes in Hardening of Ni Solid Solutions, Mater. Sci. Eng. A, Elsevier B.V., 2010, 527(26), p 6809–6815,
  29. 29.
    A.M.S. Costa, E. Hawk, J. Dansbury, C.A. Nunes, and G.E. Fuchs, Creep Properties of Directionally Solidified Nb-Modified Ni-Base Superalloy, Mar-M247, J. Mater. Eng. Perform., 2018, 27(11), p 5744–5751CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • A. M. S. Costa
    • 1
    Email author
  • E. S. N. Lopes
    • 2
  • R. J. Contieri
    • 3
  • R. Caram
    • 2
  • R. Baldan
    • 4
  • G. E. Fuchs
    • 5
  • C. A. Nunes
    • 6
  1. 1.Methodist University of PiracicabaSanta Bárbara d’OesteBrazil
  2. 2.School of Mechanical EngineeringUniversity of CampinasCampinasBrazil
  3. 3.School of Applied SciencesUniversity of CampinasLimeiraBrazil
  4. 4.São Paulo State University (Unesp)ItapevaBrazil
  5. 5.Materials Science and Engineering DepartmentUniversity of FloridaGainesvilleUSA
  6. 6.Escola de Engenharia de LorenaUniversidade de Sao PauloLorenaBrazil

Personalised recommendations