Advertisement

Characterization of a Cast Duplex Stainless Steel with 3.0%Cu and Modeling of Precipitation Hardening

  • H. M. L. F. de Lima
  • S. S. M. TavaresEmail author
  • W. S. Araujo
  • J. Dille
  • L. Malet
Article
  • 33 Downloads

Abstract

Duplex stainless steels (DSSs) are corrosion-resistant alloys extensively used in aggressive environments. Cast DSSs may be selected for pipes, valves and pumps in chemical, petrochemical and nuclear industries. The grade steel ASTM A890 1B is an example of cast DSS with 2.7-3.3%Cu addition. Copper increases the resistance to many types of corrosion, especially in non-oxidizing environments. When the copper content is higher than 2%, the steel can be precipitation-hardened. In this work, the precipitation hardening of a DSS ASTM A890 1B steel with 3.0%Cu was studied and modeled for aging temperatures in the 450-600 °C range. Copper precipitates in the ferrite phase, but remains in solid solution in the austenite. The age hardening curves were modeled by ΔH = K(t)n model, where ΔH is the increase in hardness, t is the aging time, and K and n are constants to be determined. The microstructure and substructure were investigated by scanning electron and transmission electron microscopes.

Keywords

aging precipitation hardening stainless steel 

Notes

Acknowledgments

Authors are grateful to Brazilian Research Agencies CAPES, CNPq and FAPERJ for financial support.

References

  1. 1.
    ASM Speciality Handbook: Stainless Steels. ASM International.Google Scholar
  2. 2.
    R.N. Gunn, Duplex Stainless Steels: Microstructure, Properties and Applications, Abington Publishing, Cambridge, 2003Google Scholar
  3. 3.
    A. Loureiro, V.C. da Costa, J.M. Pardal, T.R. Montenegro, and S.S.M. Tavares, Influence of Heat Treatments at 475 °C and 400 °C on the Pitting Corrosion Resistance and Sensitization of UNS S32750 and UNS S32760 Superduplex Stainless Steels, Mater. Corros., 2012, 63, p 522Google Scholar
  4. 4.
    S.S.M. Tavares, J.M. Pardal, H.F.G. de Abreu, C.S. Nunes, and M.R. da Silva, Tensile Properties of Duplex UNS S32205 and Lean Duplex UNS S32304 Steels and the Influence of Short Duration 475 °C Aging, Mater. Res., 2012, 15, p 859CrossRefGoogle Scholar
  5. 5.
    Y.H. Yao, J.F. Wei, and Z.P. Wang, Effect of Long-Term Thermal Aging on the Mechanical Properties of Casting Duplex Stainless Steels, Mater. Sci. Eng. A, 2012, 551, p 116CrossRefGoogle Scholar
  6. 6.
    S. Lee, P.T. Kuo, K. Wichman, and O. Chopra, Flaw Evaluation of Thermally Aged Cast Stainless Steel in Light-Water Reactor Applications, Int. J. Press. Vess. Pip., 1997, 72, p 37CrossRefGoogle Scholar
  7. 7.
    J. Yoganandh, S. Natarajan, and S.P. Kumaresh Babu, Erosive Wear Behavior of High-Alloy Cast Iron and Duplex Stainless Steel Under Mining Conditions, J. Mater. Eng. Perform., 2015, 24, p 3588CrossRefGoogle Scholar
  8. 8.
    M. Martins and L.C. Casteletti, Heat Treatment Temperature Influence on ASTM 890 GR 6A Superduplex Stainless Steel Microstructure, Mater. Charact., 2005, 55, p 225CrossRefGoogle Scholar
  9. 9.
    J.-S. Lee, S.-H. Jeon, and Y.-S. Park, Effects of Solution Annealing Temperature on the Galvanic Corrosion Behavior of the Super Duplex Stainless Steels, J. Mater. Eng. Perform., 2013, 22, p 557CrossRefGoogle Scholar
  10. 10.
    ASTM A890—standard specification for castings, iron–chromium–nickel–molybdenum corrosion-resistant, duplex (austenitic/ferritic) for general application. ASTM, West Conshohocken; 2000.Google Scholar
  11. 11.
    I.A. Armas and S. Degallaix-Moreuil, Duplex Stainless Steels, Wiley, New York, 2009Google Scholar
  12. 12.
    M. Seo, G. Hultquist, C. Leygraf, and N. Sato, The Influence of Minor Alloying Elements (Nb, Ti and Cu) on the Corrosion Resistivity of Ferritic Stainless Steel in Sulfuric Acid Solution, Corros. Sci., 1986, 26, p 949CrossRefGoogle Scholar
  13. 13.
    S.H. Jeon, H.J. Kim, K.H. Kong, and Y.S. Park, Effects of Copper Addition on the Passivity and Corrosion Behavior of 27Cr-7Ni Hyper Duplex Stainless Steels in Sulfuric Acid Solution, Mater. Trans., 2015, 56, p 78CrossRefGoogle Scholar
  14. 14.
    P. Li, Y. Zhao, Y. Liu, Y. Zhao, D. Xu, C. Yang, T. Zhang, T. Gu, and K. Yang, Effect of Cu Addition to 2205 Duplex Stainless Steel on the Resistance Against Pitting Corrosion by the Pseudomonas aeruginosa Biofilm, J. Mater. Sci. Technol., 2017, 33, p 23Google Scholar
  15. 15.
    W. Sha, Quantification of Age Hardening in Maraging Steels and Ni-Base Superalloys, Scr. Mater., 2000, 42, p 549CrossRefGoogle Scholar
  16. 16.
    E.A. Wilson, Quantification of Ageing Hardening in an Fe-12Ni-6Mn, Scr. Mater., 1997, 36(10), p 1179–1185CrossRefGoogle Scholar
  17. 17.
    J.M. Pardal, S.S.M. Tavares, V.F. Terra, M.R. da Silva, and D.R. Dos Santos, Modeling of Precipitation Hardening During the Aging and Overaging of 18Ni-Co-Mo-Ti Maraging 300 Steel, J. Alloys Compd., 2005, 393, p 109CrossRefGoogle Scholar
  18. 18.
    Y.-C. Hsieh, L. Zhang, T.-F. Chung, Y.-T. Tsai, J.-R. Yang, T. Ohmura, and T. Suzuki, In-Situ Transmission Electron Microscopy Investigation of the Deformation Behavior of Spinodal Nanostructured δ-Ferrite in a Duplex Stainless Steel, Scr. Mater., 2016, 125, p 44CrossRefGoogle Scholar
  19. 19.
    J. Banas and A. Mazurkiewicz, The Effect of Copper on Passivity and Corrosion Behaviour of Ferritic and Ferritic–Austenitic Stainless Steels, Mater. Sci. Eng. A, 2000, 277, p 183CrossRefGoogle Scholar
  20. 20.
    I. Le May and L.M. Schetky, Copper in Iron and Steel, Wiley, New York, 1982Google Scholar
  21. 21.
    H.R. Habibi Bajguirani, C. Servant, and G. Cizeron, TEM Investigation of Precipitation Phenomena Occurring in PH 15-5 Alloy, Acta Metall. Mater., 1993, 41(5), p 1613CrossRefGoogle Scholar
  22. 22.
    Y.U. Heo, Y.K. Kim, J.S. Kim, and J.K. Kim, Phase Transformation of Cu Precipitates from bcc to fcc in Fe-3Si-2Cu Alloy, Acta Mater., 2013, 61, p 519CrossRefGoogle Scholar
  23. 23.
    T. Zhou, R.P. Babu, J. Odqvist, H. Yu, and P. Hedström, Quantitative Electron Microscopy and Physically Based Modelling of Cu Precipitation in Precipitation-Hardening Martensitic Stainless Steel 15-5 PH, Mater. Des., 2018, 143, p 141CrossRefGoogle Scholar
  24. 24.
    G. Han, Z.J. Xie, Z.Y. Li, B. Lei, C.J. Shang, and R.D.K. Misra, Evolution of Crystal Structure of Cu Precipitates in a Low Carbon Steel, Mater. Des., 2017, 135, p 92CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • H. M. L. F. de Lima
    • 1
  • S. S. M. Tavares
    • 2
    Email author
  • W. S. Araujo
    • 1
  • J. Dille
    • 3
  • L. Malet
    • 3
  1. 1.Departamento de Engenharia Metalúrgica e MateriaisUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de Engenharia MecânicaUniversidade Federal FluminenseNiteróiBrazil
  3. 3.4MAT, Materials Engineering, Characterization, Processing and RecyclingUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations