Advertisement

Dry Sliding Wear Resistance of Cobalt Boride Coatings Formed on ASTM F1537 Alloy

  • I. Campos-SilvaEmail author
  • R. C. Vega-Morón
  • C. D. Reséndiz-Calderón
  • D. Bravo-Bárcenas
  • O. L. Eryilmaz
  • O. Kahvecioglu-Feridun
  • G. Rodríguez-Castro
Article
  • 17 Downloads

Abstract

New results about the wear resistance of CoB-Co2B coatings under dry sliding conditions were estimated in this work. The cobalt boride coatings were developed at the surface of the ASTM F1537 alloy by means of the powder-pack boriding process using two experimental conditions: 1223 K with 6 h of exposure and 1273 K with 10 h of exposure. Before the sliding wear tests, Vickers depth-sensing microindentation tests were conducted on the cross section of the cobalt boride coatings to estimate the distribution of hardness, Young’s modulus, and residual stresses. Otherwise, the sliding wear tests were performed on both boriding conditions and on the untreated material, using a ball-on-flat configuration comprised of an alumina ball as a counterpart with applied loads between 5 and 20 N. The wear rates of the borided ASTM F1537 alloy were ranged between 4.02 and 8.91 × 10−6 mm3 N−1 m−1 compared with the values of the untreated material (13.90 and 15.78 × 10−6 mm3 N−1 m−1) for the overall set of experimental conditions; nevertheless, the influence of boriding conditions (1273 K with 10 h of exposure) tended to increase the CoB coating thickness, developing a more brittle layer that decreased the sliding wear resistance at the surface of the borided ASTM F1537 alloy. Finally, the presence of failure mechanisms on the surface of the wear tracks was analyzed for both borided ASTM F1537 alloy and untreated material.

Keywords

boriding cobalt boride coatings failure mechanisms friction coefficient wear resistance 

Notes

Acknowledgments

This work was supported by the research Grant 20195029 of the Instituto Politécnico Nacional of Mexico.

References

  1. 1.
    R. Pilliar and S. Ramsay, Cobalt-Base Alloy, Materials for Medical Device, 1st ed., R. Narayan, Ed., ASM International, Russell Township, 2012, p 211–222Google Scholar
  2. 2.
    H. Beutler, M. Lehman, and G. Stahli, Wear Behavior of Medical Engineering Materials, Wear, 1975, 33, p 337–350CrossRefGoogle Scholar
  3. 3.
    H. Matusiewicz, Potential Release of in vivo Trace Metals from Metallic Medical Implants in the Human Body: from Ions to Nanoparticles—a Systematic Analytical Review, Acta Biomater., 2014, 10, p 2379–2403CrossRefGoogle Scholar
  4. 4.
    A.C. Fraker, Corrosion of Metallic Implants and Prosthetic Devices, Corrosion-Metals Handbook, 1st ed., L.J. Korb, Ed., ASM International, Russell Township, 1987, p 1324–1335Google Scholar
  5. 5.
    H. Liang, B. Shi, A. Fairchild, and T. Cale, Applications of Plasma Coatings in Artificial Joints: an Overview, Vacuum, 2004, 73, p 317–326CrossRefGoogle Scholar
  6. 6.
    L. Kuncicka, R. Kocich, and T.C. Lowe, Advances in Metals and Alloys for Joint Replacement, Prog. Mater. Sci., 2017, 88, p 232–280CrossRefGoogle Scholar
  7. 7.
    J.M. Johnston, M. Jubinsky, and S.A. Catledge, Plasma Boriding of a Cobalt-Chromium Alloy as an Interlayer for Nanostructured Diamond Growth, Appl. Surf. Sci., 2015, 328(2015), p 133–139CrossRefGoogle Scholar
  8. 8.
    I. Campos-Silva, D. Bravo-Bárcenas, H. Cimenoglu, U. Figueroa-López, M. Flores-Jiménez, and M. Meydanoglu, The Boriding Process in CoCrMo Alloy: Fracture Toughness in Cobalt Boride Coatings, Surf. Coat. Technol., 2014, 260, p 362–368CrossRefGoogle Scholar
  9. 9.
    D. Mu, C. Yang, B. Shen, and H. Jiang, Oxidation Resistance of Borided Pure Cobalt, J. Alloys Compd., 2009, 479, p 629–633CrossRefGoogle Scholar
  10. 10.
    K.G. Anthymidis, G. Stergioudis, D. Roussos, P. Zinoviadis, and D.N. Tsipas, Boriding of Ferrous and Non-Ferrous Metals and Alloys in Fluidised Bed Reactor, Surf. Eng., 2002, 18, p 255–259CrossRefGoogle Scholar
  11. 11.
    D. Bravo-Bárcenas, I. Campos-Silva, H. Cimenoglu, J. Martínez-Trinidad, M. Flores-Jiménez, and H. Martínez-Gutiérrez, Characterisation of CoB-Co2B Coatings by the Scratch Test, Surf. Eng., 2016, 32, p 570–577CrossRefGoogle Scholar
  12. 12.
    D. Mu and B. Shen, Mechanical and Dry-Sliding Wear Properties of Boronized Pure Cobalt Using Boronizing Powders with SiC as Diluent, Surf. Coat. Technol., 2013, 236, p 102–106CrossRefGoogle Scholar
  13. 13.
    I. Campos-Silva, D. Bravo-Bárcenas, A. Meneses-Amador, M. Ortiz-Dominguez, H. Cimenoglu, U. Figueroa-López, and J. Andraca-Adame, Growth Kinetics and Mechanical Properties of Boride Layers Formed at the Surface of the ASTM F-75 Biomedical Alloy, Surf. Coat. Technol., 2013, 25, p 402–414CrossRefGoogle Scholar
  14. 14.
    A. Meneses-Amador, D. Sandoval-Juárez, G.A. Rodríguez-Castro, D. Fernández-Valdés, I. Campos-Silva, R.C. Vega-Morón, and J.L. Arciniega-Martínez, Contact Fatigue Performance of Cobalt Boride Coatings, Surf. Coat. Technol., 2018, 353, p 346–354CrossRefGoogle Scholar
  15. 15.
    D. Mu, B. Shen, and X. Zhao, Effects of Boronizing on Mechanical and Dry-Sliding Wear Properties of CoCrMo Alloy, Mater. Des., 2010, 31, p 3933–3936CrossRefGoogle Scholar
  16. 16.
    G.A. Rodríguez-Castro, C.D. Reséndiz-Calderón, L.F. Jiménez-Tinoco, A. Meneses-Amador, E.A. Gallardo-Hernández, and I.E. Campos-Silva, Micro-Abrasive Wear Resistance of CoB/Co2B Coatings Formed in CoCrMo Alloy, Surf. Coat. Technol., 2015, 284, p 258–263CrossRefGoogle Scholar
  17. 17.
    M.A. Wimmer, C. Sprecher, R. Hauert, G. Tager, and A. Fischer, Tribochemical Reaction on Metal-on-Metal Hip Joint Bearings: a Comparison Between in vitro and in vivo Results, Wear, 2003, 255, p 1007–1014CrossRefGoogle Scholar
  18. 18.
    R. Pourzal, I. Catelas, R. Theissmann, C. Kaddick, and A. Fischer, Characterization of Wear Particles Generated from CoCrMo Alloy Under Sliding Wear Conditions, Wear, 2011, 271, p 1658–1666CrossRefGoogle Scholar
  19. 19.
    W.C. Oliver and G.M. Pharr, An improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583CrossRefGoogle Scholar
  20. 20.
    K.S. Chen, T.C. Chen, and K.S. Ou, Development of Semi-Empirical Formulation for Extracting Materials Properties from Nanoindentation Measurements: Residual Stresses, Substrate Effect and Creep, Thin Solid Films, 2008, 516, p 1931–1940CrossRefGoogle Scholar
  21. 21.
    V.I. Dybkov, Growth of Boride Layers on the 13% Cr Steel Surface in a Mixture of Amorphous Boron and KBF4, J. Mater. Sci., 2007, 42, p 6614–6627CrossRefGoogle Scholar
  22. 22.
    I. Campos-Silva, A.D. Contla-Pacheco, A. Ruiz-Rios, J. Martínez-Trinidad, G. Rodríguez-Castro, A. Meneses-Amador, and W.D. Wong-Angel, Effect of Scratch Tests on the Adhesive and Cohesive Properties of Borided Inconel 718 Superalloy, Surf. Coat. Technol., 2018, 349, p 917–927CrossRefGoogle Scholar
  23. 23.
    Y. Sun and T. Bell, Dry Sliding Wear Resistance of Low Temperature Plasma Carburized Austenitic Stainless Steel, Wear, 2002, 253, p 689–693CrossRefGoogle Scholar
  24. 24.
    A.V. Byakova, Influence of Texture on the Strength and Supporting Capacity of Boride Coatings, Poroshkovaya Metallurgiya, 1993, 4, p 36–43Google Scholar
  25. 25.
    H. Cimenoglu, E. Atar, and A. Motallebzadeh, High Temperature Tribological Behaviour of Borided Surfaces Based on the Phase Structure of the Boride Layer, Wear, 2014, 309, p 152–158CrossRefGoogle Scholar
  26. 26.
    R. Carrera-Espinoza, U. Figueroa-López, J. Martínez-Trinidad, I. Campos-Silva, E. Hernández-Sánchez, and A. Motallebzadeh, Tribological Behavior of Borided AISI, 1018 Steel Under Linear Reciprocating Sliding Conditions, Wear, 2016, 362–363, p 1–7CrossRefGoogle Scholar
  27. 27.
    F. Toschi, C. Melandri, P. Pinasco, E. Roncari, S. Guicciardi, and G. de Portu, Influence of Residual Stresses on the Wear Behavior of Alumina/Alumina-Zirconia Laminated Composites, J. Am. Ceram. Soc., 2003, 86, p 1547–1553CrossRefGoogle Scholar
  28. 28.
    I. Hutchings and P. Shipway, Tribology: Friction and Wear of Engineering Materials, 2nd ed., Buttherworth-Heinemann, Oxford, 2017, p 107–164CrossRefGoogle Scholar
  29. 29.
    T.S. Eyre, Effect of Boronising on Friction and Wear of Ferrous Metals, Wear, 1975, 34, p 383–397CrossRefGoogle Scholar
  30. 30.
    T.E. Fischer, M.P. Anderson, and S. Jahanmir, Influence of Fracture Toughness on the Wear Resistance of Yttria-Doped Zirconium Oxide, J. Am. Ceram. Soc., 1989, 72, p 252–257CrossRefGoogle Scholar
  31. 31.
    B.R. Lawn and D.B. Marshall, Hardness, Toughness and Brittleness: an Indentation Analysis, J. Am. Ceram. Soc., 1979, 62, p 347–350CrossRefGoogle Scholar
  32. 32.
    I. Campos-Silva, D. Bravo-Bárcenas, M. Flores-Jiménez, I. Arzate-Vázquez, C. López-García, and S. Bernabé-Molina, Diffusion Boride Coatings in CoCrMo Alloy and Some Indentation Properties, Metallogr. Microstruct. Anal., 2015, 4, p 158–168CrossRefGoogle Scholar
  33. 33.
    T.E. Tallian, On Competing Failure Modes in Rolling Contact, ASLE Trans., 1967, 10, p 418–439CrossRefGoogle Scholar
  34. 34.
    K. Holmberg and A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, 2nd ed., B.J. Briscoe, Ed., Elsevier Publications, Amsterdam, 1994, p 57–58Google Scholar
  35. 35.
    K.H. Habig and R. Chatterjee-Fischer, Wear Behaviour of Boride Layers on Alloyed Steels, Tribol. Int., 1981, 14, p 209–215CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • I. Campos-Silva
    • 1
    Email author
  • R. C. Vega-Morón
    • 1
  • C. D. Reséndiz-Calderón
    • 2
  • D. Bravo-Bárcenas
    • 3
  • O. L. Eryilmaz
    • 4
  • O. Kahvecioglu-Feridun
    • 4
  • G. Rodríguez-Castro
    • 1
  1. 1.Instituto Politécnico Nacional, Grupo Ingeniería de Superficies, SEPI-ESIMEU.P. Adolfo López Mateos, ZacatencoCiudad de MexicoMexico
  2. 2.Tecnológico de Monterrey Campus Estado de México, Departamento de Mecatrónica/Escuela de Ingeniería y CienciasAtizapán de ZaragozaMexico
  3. 3.CONACYT—Universidad de Guadalajara, Departamento de Ingeniería de Proyectos/Centro Universitario de Ciencias Exactas e IngenieríasGuadalajaraMexico
  4. 4.Argonne National Laboratory, Energy System DivisionArgonneUSA

Personalised recommendations