Advertisement

Hardening of A6111-T4 Aluminum Alloy at Large Strains and Its Effect on Sheet Forming Operations

  • Sergey Golovashchenko
  • Natalia ReinbergEmail author
  • Amir Hassannejadasl
  • Daniel Green
Article
  • 45 Downloads

Abstract

In a number of sheet metal stamping and joining processes, the material undergoes large plastic deformation exceeding the range of plastic strain achievable in a standard tensile test prior to material plastic instability. In order to extend the range of effective strains, the multistep rolling process was employed which enabled prestraining of aluminum sheet above 2.0 of true strain. Tensile testing of rolled samples was used to identify the flow stress corresponding to the level of prestrain: By varying the prestrain level, several data points were obtained for the studied flow curve. The numerical simulation using Abaqus software for the cold rolling process of aluminum strips confirmed that majority of the strip is deformed in plane strain compression condition. Performed simulation of the LDH test determined that earlier fracture might occur if the curve obtained via rolling–tensile testing approach is used versus traditional power law approximation and Voce law approximation. The results of simulation for the multistep drawing of a cylindrical cup revealed possible wrinkling in the die entry area during redrawing stage of the process if the rolling–tensile testing flow curve is employed.

Keywords

aluminum alloy flow curve prestrain rolling–tensile testing 

Notes

Acknowledgments

The authors would like to thank Dr. Yevgeniya Katykova of Oakland University for her contribution to the initial phase of this work and Mr. Christopher Maris and Mr. Jia Cheng of University of Windsor for their contribution to developing experimental data on tensile performance of rolled samples.

References

  1. 1.
    S.S. Hecker, M.G. Stout, and D.T. Eash, Experiments on Plastic Deformation at Finite Strains, Proceedings of the Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment, and Computation, 1982, p 162–201Google Scholar
  2. 2.
    ASTM Standard E8/E8m, Standard Test Methods for Tension Testing of Metallic Materials, ASTM Stand. E8/E8M, 2008, 28(03.01), p 743–746Google Scholar
  3. 3.
    W.J. Dan, W.G. Zhang, S.H. Li, and Z.Q. Lin, An Experimental Investigation of Large-Strain Tensile Behavior of a Metal Sheet, Mater. Des., 2007, 28(7), p 2190–2196CrossRefGoogle Scholar
  4. 4.
    W.W. Cai, J.E. Carsley, D.B. Hayden, L.G. Hector Jr., and T.B. Stoughton, Estimation of Metal Hardening Models at Large Strains, Proceedings of the ASME International Manufacturing Science and Engineering Conference 2007, MSEC2007, 2007Google Scholar
  5. 5.
    A.J. Ranta-Eskola, Use of the Hydraulic Bulge Test in Biaxial Tensile Testing, Int. J. Mech. Sci., 1979, 21(8), p 457–465CrossRefGoogle Scholar
  6. 6.
    G. Gutscher, H.-C. Wu, G. Ngaile, and T. Altan, Determination of Flow Stress for Sheet Metal Forming Using the Viscous Pressure Bulge Test, J. Mater. Process. Technol., 2004, 146, p 1–7CrossRefGoogle Scholar
  7. 7.
    L.M. Smith, C. Wanintrudal, W. Yang, and S. Jiang, A New Experimental Approach for Obtaining Diffuse-Strain Flow Stress Curves, J. Mater. Process. Technol., 2009, 209(8), p 3830–3839.  https://doi.org/10.1016/j.jmatprotec.2008.09.010 CrossRefGoogle Scholar
  8. 8.
    H. Ford, Advanced Mechanics of Materials, Longmans, London, 1963Google Scholar
  9. 9.
    J.G. Sevillano, P. van Houtte, and E. Aernoudt, Large Strain Work Hardening and Textures, Prog. Mater Sci., 1980, 25(2–4), p 69–134CrossRefGoogle Scholar
  10. 10.
    M.S. Mohebbi, A. Akbarzadeh, Y.-O. Yoon, and S.-K. Kim, Flow Stress Analysis of Ultrafine Grained AA 1050 by Plane Strain Compression Test, Mater. Sci. Eng. A, 2014, 593, p 136–144CrossRefGoogle Scholar
  11. 11.
    S.M. Byon, S.I. Kim, and Y. Lee, A Numerical Approach to Determine Flow Stress–Strain Curve of Strip and Friction Coefficient in Actual Cold Rolling Mill, J. Mater. Process. Technol., 2008, 201(1–3), p 106–111CrossRefGoogle Scholar
  12. 12.
    H. Ford, Researches into the Deformation of Metals by Cold Rolling, Proc. lnstn Mech. Engrs., 1948, 159, p 39–67Google Scholar
  13. 13.
    Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen, Microstructure and Strength of Commercial Purity Aluminium (AA 1200) Cold-Rolled to Large Strains, Acta Mater., 2002, 50(15), p 3789–3802CrossRefGoogle Scholar
  14. 14.
    C. Hubert, L. Dubar, M. Dubar, and A. Dubois, Experimental Simulation of Strip Edge Cracking in Steel Rolling Sequences, J. Mater. Process. Technol., 2010, 210(12), p 1587–1597CrossRefGoogle Scholar
  15. 15.
    V.L. Kolmogorov, A.A. Bogatov, B.A. Migachev, E.G. Zudov, Yu.E. Freidenzon, and M.E. Freidenzon, Plasticity and Fracture [in Russian], Metallurgiya, Moscow, 1977Google Scholar
  16. 16.
    B. Avitzur, Handbook of Metal Forming Process, John Wiley and Sons, Inc., Canada, 1983Google Scholar
  17. 17.
    A.I. Tselikov, A.D. Tomlenov, V.I. Zyuzin, A.V. Tretyakov, and G.S. Nikitin, Teoriya prokatki: Spravochnik (Theory of Rolling: A Handbook), Metallurgiya, Moscow, 1982Google Scholar
  18. 18.
    A.P. Grudev, Vneshnee trenie pri prokatke [External Friction During Rolling], Metallurgiya Publ., Moscow, 1973, 288 pGoogle Scholar
  19. 19.
    R.H. Wagoner and J.Chenot, Fundamentals of Metal Forming, 1997Google Scholar
  20. 20.
    M. Jain, D.J. Lloyd, and S.R. Macewen, Hardening Laws, Surface Roughness and Biaxial Tensile Limit Strains of Sheet Aluminium Alloys, Int. J. Mech. Sci., 1996, 38(2), p 219–232CrossRefGoogle Scholar
  21. 21.
    J.W. Yoon and F. Barlat, Modeling and Simulation of the Forming of Aluminum Sheet Alloys, ASM Handb., 2006, 14B, p 792–826Google Scholar
  22. 22.
    J.K. Lee, G.L. Kinzel, and R.H Wagoner, Proceedings of the 3rd International Conference NUMISHEET ‘96: Numerical Simulation of 3D Sheet Forming Processes: Verification of Simulation with Experiments, Dearborn, Michigan, September 29-October 3, 1996, p 428–432Google Scholar
  23. 23.
    R. Porcaro, M. Langseth, A.G. Hanssen, H. Zhao, S. Weyer, and H. Hooputra, Crashworthiness of Self-Piercing Riveted Connections, Int. J. Impact Eng., 2008, 35(11), p 1251–1266CrossRefGoogle Scholar
  24. 24.
    N.H. Hoang, R. Porcaro, M. Langseth, and A.G. Hanssen, Self-Piercing Riveting Connections Using Aluminum Rivets, Int. J. Solids Struct., 2010, 47, p 427–439CrossRefGoogle Scholar
  25. 25.
    L.A. Shofman, Elements of Theory of Cold Forming, Oborongiz, Moscow, 1952Google Scholar
  26. 26.
    E.N. Moshnin, Tekhnologiia shtampovki krupnogabaritnykh detalei [Metal Stamping of Large Parts], Mashinostroenie publ., Moscow, 1973Google Scholar
  27. 27.
    Y.S. Kim, Y.J. Son, and J.Y. Park, Bifurcation Analysis of Wrinkling Formation for Anisotropic Sheet, KSME Int. J., 1999, 13, p 221–228CrossRefGoogle Scholar
  28. 28.
    K. Pöhlandt, R.S. Raghupathi, J.D. Saniter, W.J. Sauer, J.A. Schey, K.J. Weinmann, and G.E.O. Widera, Handbook of Metal Forming, Society of Manufacturing Engineers, K. Lange, Ed., 1985Google Scholar
  29. 29.
    W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Met. Form. Mech. Metall., 2011, p 1–331Google Scholar
  30. 30.
    H.S. Cheng, J. Cao, and Z.C. Xia, An Accelerated Springback Compensation Method, Int. J. Mech. Sci., 2007, 49(3), p 267–279CrossRefGoogle Scholar
  31. 31.
    X. Xue, J. Liao, G. Vincze, A.B. Pereira, and F. Barlat, Experimental Assessment of Nonlinear Elastic Behaviour of Dual-Phase Steels and Application to Springback Prediction, Int. J. Mech. Sci., 2016, 117, p 1–15CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentOakland UniversityRochesterUSA
  2. 2.Mechanical, Automotive and Materials EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations