Microstructure and Mechanical Properties of Exothermic-Reaction-Assisted Friction-Stir-Welded Nickel-Aluminum Bronze Alloy

  • S. SivaEmail author
  • S. Sampathkumar
  • J. Sudha


In the present work, nickel-aluminum bronze alloy is joined using conventional friction stir welding (CFSW) and thermite heat-assisted friction stir welding (THAFSW). In this experiment, preheating technology was utilized using the thermite reaction of Al-CuO powder. A substantial rise in temperature was observed during THAFSW which is beneficial to the eliminations of tunnel defect. In THAFSW, a large amount of α-phase was observed from the top to the center in stir zone as a result of the rise in temperature. Transverse tensile strength of the THAFSW and CFSW was improved by 27 and 14%, respectively, in comparison with base metal tensile strength. A higher microhardness values observed at the bottom of the stir zone in the THAFSW, while this was seen higher in the surface zone and the center zone in the case of CFSW. Tool wear was reduced during the THAFSW process.


nickel-aluminum bronze alloy tensile strength thermite heat-assisted friction stir welding tunnel defect microstructure 



  1. 1.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R Rep., 2005, 50(1–2), p 1–78CrossRefGoogle Scholar
  2. 2.
    S. Walden, G. Michael, and P. Temple-smith, United States Patent 19, 1995, (54)Google Scholar
  3. 3.
    Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, Microstructural Evolution of 6063 Aluminum during Friction- Stir Welding, Metall. Mater. Trans. A, 1999, 30(September), p 2429–2437CrossRefGoogle Scholar
  4. 4.
    L. Zhou, K. Nakata, J. Liao, and T. Tsumura, Microstructural Characteristics and Mechanical Properties of Non-combustive Mg–9Al–Zn–Ca Magnesium Alloy Friction Stir Welded Joints, Mater. Des., 2012, 42, p 505–512CrossRefGoogle Scholar
  5. 5.
    A. Jahanafrooz, E. Hasan, G.W. Lorimer, and N. Ridley, Microstructural Development in Complex Nickel-Aluminum Bronzes, Metall. Trans. A, 1983, 14(October), p 1951–1956CrossRefGoogle Scholar
  6. 6.
    M.D. Fuller, S. Swaminathan, A.P. Zhilyaev, and T.R. McNelley, Microstructural Transformations and Mechanical Properties of Cast NiAl Bronze: Effects of Fusion Welding and Friction Stir Processing, Mater. Sci. Eng. A, 2007, 463, p 128–137CrossRefGoogle Scholar
  7. 7.
    K. Oh-ishi and T.R. Mcnelley, Microstructural Modification of As-Cast NiAl Bronze by Friction Stir Processing, Metall. Mater. Trans. A, 2004, 35(September), p 2951–2961CrossRefGoogle Scholar
  8. 8.
    D.R. Ni, P. Xue, D. Wang, B.L. Xiao, and Z.Y. Ma, Inhomogeneous Microstructure and Mechanical Properties of Friction Stir Processed NiAl Bronze, Mater. Sci. Eng. A, 2009, 524, p 119–128CrossRefGoogle Scholar
  9. 9.
    S.K. Menon, F.A. Pierce, B.P. Rosemark, K. Oh-ishi, S. Swaminathan, and T.R. Mcnelley, Strengthening Mechanisms in NiAl Bronze : Hot Deformation by Rolling and Friction-Stir Processing, Metall. Mater. Trans. A, 2012, 43, p 3687–3702CrossRefGoogle Scholar
  10. 10.
    T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, and G. Çam, Microstructural and Mechanical Properties of Friction Stir Welded Nickel-Aluminum Bronze (NAB) Alloy, J. Mater. Eng. Perform., 2016, 25(1), p 320–326CrossRefGoogle Scholar
  11. 11.
    M.S. Rizi and A.H. Kokabi, Microstructure Evolution and Microhardness of Friction Stir Welded Cast Aluminum Bronze, J. Mater. Process. Technol., 2014, 214(8), p 1524–1529CrossRefGoogle Scholar
  12. 12.
    S. Selvaraju, S. Senthamaraikannan, S. Jayaprakasham, A.R. Madiq, F.S. Welding, and T. Strength, Effect of Process Parameters on Microstructure and Mechanical Properties of Friction Stir Welded Cast Nickel Aluminum Bronze Alloy (C95800), Mater. Res., 2018, 21(3), p 1–13CrossRefGoogle Scholar
  13. 13.
    A. Arora, M. Mehta, and T. Debroy, Load Bearing Capacity of Tool Pin during Friction Stir Welding, Int. J. Adv. Manuf. Technol., 2012, 61(9–12), p 911–920CrossRefGoogle Scholar
  14. 14.
    M. Vargas and S. Lathabai, Microstructure and Mechanical Properties of a Friction Stir Processed Al–Zn–Mg–Cu Alloy, Mater. Sci. Forum, 2010, 656, p 1428–1431CrossRefGoogle Scholar
  15. 15.
    W.J. Arbegast, A Flow-Partitioned Deformation Zone Model for Defect Formation During Friction Stir Welding, Scripta Mater., 2008, 58(5), p 372–376CrossRefGoogle Scholar
  16. 16.
    R. Ramesh, I. Dinaharan, E.T. Akinlabi, and N. Murugan, Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass, J. Mater. Eng. Perform., 2018, 27(4), p 1544–1554CrossRefGoogle Scholar
  17. 17.
    W. This, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56(1), p 1–48CrossRefGoogle Scholar
  18. 18.
    G.K. Padhy, C.S. Wu, and S. Gao, Auxiliary Energy Assisted Friction Stir Welding—Status Review, Sci. Technol. Weld. Joi., 2015, 20(8), p 631–649CrossRefGoogle Scholar
  19. 19.
    H. Bang, H. Bang, G. Jeon, I. Oh, and C. Ro, Gas Tungsten Arc Welding Assisted Hybrid Friction Stir Welding of Dissimilar Materials Al6061-T6 Aluminum Alloy and STS304 Stainless Steel, Mater. Des., 2012, 37, p 48–55CrossRefGoogle Scholar
  20. 20.
    H. Bang, H. Bang, H. Song, and S. Joo, Joint Properties of Dissimilar Al6061-T6 Aluminum Alloy/Ti-6%Al-4%V Titanium Alloy by Gas Tungsten Arc Welding Assisted Hybrid Friction Stir Welding, Mater. Des., 2013, 51, p 544–551CrossRefGoogle Scholar
  21. 21.
    A.I. Álvarez, M. García, G. Pena, and D. Verdera, Evaluation of an Induction-Assisted Friction Stir Welding Technique for Super Duplex Stainless Steels †, Surf. Interface Anal., 2013, 2014, p 892–896Google Scholar
  22. 22.
    D.K. Yaduwanshi, S. Bag, and S. Pal, Effect of Preheating in Hybrid Friction Stir Welding of Aluminum Alloy, J. Mater. Eng. Perform., 2014, 23(10), p 3794–3803CrossRefGoogle Scholar
  23. 23.
    D.K. Yaduwanshi, S. Bag, and S. Pal, Numerical Modeling and Experimental Investigation on Plasma-Assisted Hybrid Friction Stir Welding of Dissimilar Materials, Mater. Des., 2016, 92, p 166–183CrossRefGoogle Scholar
  24. 24.
    J. Luo, W. Chen, and G. Fu, Hybrid-Heat Effects on Electrical-Current Aided Friction Stir Welding of Steel, and Al and Mg Alloys, J. Mater. Process. Technol., 2014, 214(12), p 3002–3012CrossRefGoogle Scholar
  25. 25.
    Y.F. Sun, Y. Konishi, M. Kamai, and H. Fujii, Microstructure and Mechanical Properties of S45C Steel Prepared by Laser-Assisted Friction Stir Welding, Mater. Des., 2013, 47, p 842–849CrossRefGoogle Scholar
  26. 26.
    K.H. Song, T. Tsumura, and K. Nakata, Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600, Mater. Trans., 2009, 50(7), p 1832–1837CrossRefGoogle Scholar
  27. 27.
    L.C. Schroeder and D.R. Poirier, Improving the Structure and Properties of Thermite Weld Metal, Mater. Sci. Eng., 1984, 63, p 23–33CrossRefGoogle Scholar
  28. 28.
    H. Habu, M. Yamamoto, S. Watanabe, and M.F. Larsen, Rocket-Borne Lithium Ejection System for Neutral Wind Measurement, An Introduction to Space Instrumentation, 1974, p 53–61Google Scholar
  29. 29.
    E. Bahrami Motlagh, J. Vahdati Khaki, and M. Haddad Sabzevar, Welding of Aluminum Alloys through Thermite like Reactions in Al-CuO-Ni System, Mater. Chem. Phys., 2012, 133(2–3), p 757–763CrossRefGoogle Scholar
  30. 30.
    T. Matsuda, M. Takahashi, T. Sano, and A. Hirose, Multiple Self-Exothermic Reactions for Room-Temperature Aluminum Bonding via Instantaneous Melting, Mater. Des., 2017, 121, p 136–142CrossRefGoogle Scholar
  31. 31.
    A.H. Kinsey, Effect of Dilution on Reaction Properties and Bonds Formed Using Mechanically Processed Dilute Thermite Foils, J. Mater. Sci. , 2016, 51(12), p 5738–5749CrossRefGoogle Scholar
  32. 32.
    W. Zhai, W. Lu, P. Zhang, M. Zhou, X. Liu, and L. Zhou, Materials Science & Engineering A Microstructure, Mechanical and Tribological Properties of Nickel-Aluminium Bronze Alloys Developed via Gas-Atomization and Spark Plasma Sintering, Mater. Sci. Eng. A, 2017, 707, p 325–336CrossRefGoogle Scholar
  33. 33.
    J. Anantapong, V. Uthaisangsuk, S. Suranuntchai, and A. Manonukul, Effect of Hot Working on Microstructure Evolution of As-Cast Nickel Aluminum Bronze Alloy, Mater. Des., 2014, 60, p 233–243CrossRefGoogle Scholar
  34. 34.
    K. Youssef, M. Sakaliyska, and H. Bahmanpour, Effect of Stacking Fault Energy on Mechanical Behavior of Bulk Nanocrystalline Cu and Cu Alloys, Acta Mater., 2011, 59(14), p 5758–5764CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, N.R. Tao, and K. Lu, Effect of Stacking-Fault Energy on Deformation Twin Thickness in Cu–Al Alloys, Scripta Mater., 2009, 60(4), p 17–19Google Scholar
  36. 36.
    X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, and R.B. Figueiredo, The Influence of Stacking Fault Energy on the Mechanical Properties of Nanostructured Cu and Cu–Al Alloys Processed by High-Pressure Torsion, Scripta Mater., 2011, 64, p 954–957CrossRefGoogle Scholar
  37. 37.
    N.R. Tao and K. Lu, Nanoscale Structural Refinement via Deformation Twinning in Face-Centered Cubic Metals, Scripta Mater., 2009, 60(12), p 1039–1043CrossRefGoogle Scholar
  38. 38.
    P. Zhou, Z.Y. Liang, R.D. Liu, and M.X. Huang, Evolution of Dislocations and Twins in a Strong and Ductile Nanotwinned Steel, Acta Mater., 2016, 111, p 96–107CrossRefGoogle Scholar
  39. 39.
    Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Dislocation-Twin Interactions in Nanocrystalline Fcc Metals, Acta Mater., 2011, 59(2), p 812–821CrossRefGoogle Scholar
  40. 40.
    Z.X. Wu, Y.W. Zhang, and D.J. Srolovitz, Dislocation-Twin Interaction Mechanisms for Ultrahigh Strength and Ductility in Nanotwinned Metals, Acta Mater., 2009, 57(15), p 4508–4518. CrossRefGoogle Scholar
  41. 41.
    S. Ji, Z. Li, Y. Wang, and L. Ma, Joint Formation and Mechanical Properties of Back Heating Assisted Friction Stir Welded Ti–6Al–4V Alloy, Mater. Des., 2017, 113, p 37–46. CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, CEGAnna UniversityChennaiIndia

Personalised recommendations