Advertisement

Influence of Thermal Treatment on the Microstructure, Mechanical Properties, and Corrosion Resistance of Newly Developed Ti20Nb13Zr Biomedical Alloy in a Simulated Body Environment

  • M. A. HusseinEmail author
  • M. Azeem
  • A. Madhan Kumar
  • N. Al-Aqeeli
  • N. K. Ankah
  • A. A. Sorour
Article

Abstract

The effect of thermal treatments on the microstructure, hardness, and electrochemical performance in a simulated body fluid were studied for the newly developed (β + α) Ti20Nb13Zr alloy (TNZ) for biomedical applications. The alloy was heat-treated for 1 h at 900 °C and then cooled at different cooling rates. Then, the solution-treated samples were aged at 400, 500, or 600 °C for 5 h. The phase evolution and microstructure of the treated alloy were examined using XRD and SEM/EDX analysis. The mechanical properties were assessed using microindentation. The surface protection performance against corrosion was assessed by potentiodynamic polarization and electrochemical impedance spectroscopic analysis. The obtained results showed that the wide range of microstructure with varied volume fraction and morphology of β and α were obtained with different heat treatment conditions. The different phases’ sizes and distributions influenced the microstructure obtained during the heat treatment, thereby affecting the mechanical properties. The corrosion performance significantly altered with variations in the microstructure of the TNZ alloy as a result of the different thermal treatments. The heat treatment of TNZ conferred enhanced combination of mechanical and corrosion protection compared to that of the commercial Ti6Al4V alloy.

Keywords

biomaterial corrosion heat treatment titanium alloy 

Notes

Acknowledgments

The authors would like to acknowledge the financial support provided by King Fahd University of Petroleum & Minerals, through Project #SR161015.

References

  1. 1.
    M. Niinomi and D.D. Sc, Metallic Biomaterials, J. Artif. Organs, 2008, 11(3), p 105–110Google Scholar
  2. 2.
    M. Niinomi, Recent Progress in Research and Development of Metallic Structural Biomaterials with Mainly Focusing on Mechanical Biocompatibility, Mater. Trans., 2018, 59(1), p 11–13Google Scholar
  3. 3.
    T. Homma, A. Arafah, D. Haley, M. Nakai, M. Niinomi, and M.P. Moody, Effect of Alloying Elements on Microstructural Evolution in Oxygen Content Controlled Ti-29Nb-13Ta-4.6 Zr (wt.%) Alloys for Biomedical Applications During Aging, J. Mater. Sci. Eng. A, 2018, 709, p 312–321Google Scholar
  4. 4.
    K. Niespodziana, K. Jurczk, and M. Jurczk, The Synthesis of Titanium Alloys for Biomedical Applications, Rev. Adv. Mater. Sci., 2008, 18, p 236–240Google Scholar
  5. 5.
    K. Wang, The Use of Titanium for Medical Applications in the USA, J. Mater. Sci. Eng. A, 1996, 213(1–2), p 134–137Google Scholar
  6. 6.
    K. Otsuka and X. Ren, Recent Developments in the Research of Shape Memory Alloys, Intermetallics, 1999, 7(5), p 511–528Google Scholar
  7. 7.
    X. Xi, T. Yu, W. Ding, and J. Xu, Grinding of Ti2AlNb Intermetallics Using Silicon Carbide and Alumina Abrasive Wheels: Tool Surface Topology Effect on Grinding Force and Ground Surface Quality, Precis. Eng., 2018, 53, p 134–145Google Scholar
  8. 8.
    C. Trepanier, R. Venugopalan, and A.R. Pelton, Corrosion Resistance and Biocompatibility of Passivated NiTi, Shape Memory Implants, L. Yahia, Ed., Springer, Berlin, Heidelberg, 2000, p 35–45Google Scholar
  9. 9.
    S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 357–362Google Scholar
  10. 10.
    A. Biesiekierski, J. Wang, M.A.H. Gepreel, and C. Wen, A New Look at Biomedical Ti-Based Shape Memory Alloys, Acta Biomater., 2012, 8(5), p 1661–1669Google Scholar
  11. 11.
    E. Eisenbarth, D. Velten, M. Muller, R. Thull, and J. Breme, Biocompatibility of β-Stabilizing Elements of Titanium Alloys, Biomaterials, 2004, 25(26), p 5705–5713Google Scholar
  12. 12.
    A.L.R. Ribeiro, R.C. Junior, F.F. Cardoso, R.B. Fernandes Filho, and L.G. Vaz, Mechanical, Physical, and Chemical Characterization of Ti-35Nb-5Zr and Ti-35Nb-10Zr Casting Alloys, J. Mater. Sci. Mater. Med., 2009, 20(8), p 1629–1636Google Scholar
  13. 13.
    R.I. Asri, W.S. Harun, M. Samykano, N.A. Lah, S.A. Ghani, F. Tarlochan, and M.R. Raza, Corrosion and Surface Modification on Biocompatible Metals: A Review, Mater. Sci. Eng. C, 2017, 77(1), p 1261–1274Google Scholar
  14. 14.
    M.A. Hussein, A.S. Mohammed, and N. Al-Aqeeli, Wear Characteristics of Metallic Biomaterials: A Review, Materials, 2015, 8(5), p 2749–2768Google Scholar
  15. 15.
    Z.A. Uwais, M.A. Hussein, M.A. Samad, and N. Al-Aqeeli, Surface Modification of Metallic Biomaterials for Better Tribological Properties: A Review, Arab. J. Sci. Eng., 2017, 42(11), p 4493–4512Google Scholar
  16. 16.
    K. Kyzioł, Ł. Kaczmarek, G. Brzezinka, and A. Kyzioł, Structure, Characterization and Cytotoxicity Study on Plasma Surface Modified Ti-6Al-4V and γ-TiAl Alloys, Chem. Eng. J., 2014, 240, p 516–526Google Scholar
  17. 17.
    M. Januś, K. Kyzioł, S. Kluska, J. Konefał-Góral, A. Małek, and S. Jonas, Plasma Assisted Chemical Vapour Deposition—Technological Design of Functional Coatings, Arch. Metall. Mater., 2015, 60(2), p 909–914Google Scholar
  18. 18.
    M.A. Hussein, A.M. Kumar, B.S. Yilbas, and N. Al-Aqeeli, Laser Nitriding of the Newly Developed Ti-20Nb-13Zr at.% Biomaterial Alloy to Enhance Its Mechanical and Corrosion Properties in Simulated Body Fluid, J. Mater. Eng. Perform., 2017, 26(11), p 5553–5562Google Scholar
  19. 19.
    M.A. Hussein, B. Yilbas, A.M. Kumar, R. Drew, and N. Al-Aqeeli, Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications, J. Mater. Eng. Perform., 2018, 27(9), p 4655–4664Google Scholar
  20. 20.
    A.M. Kumar, M.A. Hussein, A.Y. Adesina, S. Ramakrishna, and N. Al-Aqeeli, Influence of Surface Treatment on PEDOT Coatings: Surface and Electrochemical Corrosion Aspects of Newly Developed Ti Alloy, RSC Adv., 2018, 34, p 19181–19195Google Scholar
  21. 21.
    M.A. Hussein, C. Suryanarayana, and N. Al-Aqeeli, Fabrication of Nano-grained Ti-Nb-Zr Biomaterials Using Spark Plasma Sintering, Mater. Des., 2015, 87, p 693–700Google Scholar
  22. 22.
    M.A. Hussein, C. Suryanarayana, M.K. Arumugam, and N. Al-Aqeeli, Effect of Sintering Parameters on Microstructure, Mechanical Properties and Electrochemical Behavior of Nb-Zr Alloy for Biomedical Applications, Mater. Des., 2015, 83, p 344–351Google Scholar
  23. 23.
    B. Zhao, T. Yu, W. Ding, L. Zhang, H. Su, and Z. Chen, Effect of Micropores on the Microstructure and Mechanical Properties of Porous Cu-Sn-Ti Composites, Mater. Sci. Eng. A, 2018, 730, p 345–354Google Scholar
  24. 24.
    Z.H. Biao, Y.U. Tianyu, D.I. Wenfeng, and L.I. Xianying, Effects of Pore Structure and Distribution on Strength of Porous Cu-Sn-Ti Alumina Composites, Chin. J. Aeronaut., 2017, 30(6), p 2004–2015Google Scholar
  25. 25.
    F. Prima, J. Debuigne, M. Boliveau, and D. Ansel, Control of Omega Volume Fraction Precipitated in a Beta Titanium Alloy: Development of an Experimental Method, J. Mater. Sci. Lett., 2000, 19(24), p 2219–2221Google Scholar
  26. 26.
    R.R. Boyer, H.J. Rack, and V. Ventatesh, The Influence of Thermomechanical Processing on the Smooth Fatigue Properties of Ti-15V-3Cr-3Al-3Sn, J. Mater. Sci. Eng. A, 1998, 243(1–2), p 97–102Google Scholar
  27. 27.
    N. El Bagoury and K.M. Ibrahim, Microstructure, Phase Transformations and Mechanical Properties of Solution Treated Bi-Modal β Titanium Alloy, Int. J. Eng. Sci. Res. Technol., 2016, 5(5), p 517–525Google Scholar
  28. 28.
    S. Nag, R. Banerjee, and H.L. Fraser, Microstructural Evolution and Strengthening Mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo Biocompatible Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 357–362Google Scholar
  29. 29.
    D. Kuroda, M. Niinomi, T. Akahori, H. Fukui, A. Suzuki, T. Hasegawa et al., Structural Biomaterials for the 21st Century, TMS, The Minerals Metals and Materials Society, Pittsburgh, 2001Google Scholar
  30. 30.
    T. Ahmed, M. Long, C. Silverstri Ruiz, and H.J. Rack, A New Low Modulus, Biocompatible Titanium Alloy, Titanium 95: Science and Technology, P.J. Bania, W.J. Evans, and H.M. Flower, Ed., IoM, London, 1995, p 1760–1767Google Scholar
  31. 31.
    T. Akahori, M. Niinomi, H. Fukui, A. Suzuki, Y. Hattori, S. Niwa et al., Titanium 2003 Science and Technology, Wiley VCH Verlag, GMBH and Co. KGaA, Weinhem, 2003Google Scholar
  32. 32.
    H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Effects of Heat Treatments on Microstructure and Properties of Ti-6Al-4V ELI, Alloy Fabricated by Electron Beam Melting (EBM), J. Mater. Sci. Eng. A, 2017, 685, p 417–428Google Scholar
  33. 33.
    Y. Okazaki, A New Ti-15Zr-4Nb-Ta Alloy for Medical Applications, Curr. Opin. Solid State Mater. Sci., 2001, 5(1), p 45–53Google Scholar
  34. 34.
    M.A. Hussein, M. Kumar, R. Drew, and N. Al-Aqeeli, Electrochemical Corrosion and In vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid, Materials, 2017, 11(1), p 26Google Scholar
  35. 35.
    M.A. Hussein and N. Al-Aqeeli, Titanium Alloys for Biomedical Applications and Fabrication Methods Thereof. US, Patent number, 2017, 9828655Google Scholar
  36. 36.
    Z. Guo, S. Malinov, and W. Sha, Modelling Beta Transus Temperature of Titanium Alloys Using Artificial Neural Network, Comput. Mater. Sci., 2005, 32(1), p 1–12Google Scholar
  37. 37.
    W. Liqiang, Y. Guanjun, Y. Huabin, C. Jimin, L. Weijie, and Z. Di, Characterization of Microstructure and Mechanical Properties of TiNbZr Alloy During Heat Treatment, Rare Met. Mater. Eng., 2009, 38(7), p 1136–1140Google Scholar
  38. 38.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583Google Scholar
  39. 39.
    A. Hynowska, A. Blanquer, E. Pellicer, J. Fornell, S. Suriñach, M.D. Baró, S. González, E. Ibáñez, L. Barrios, C. Nogués, and J. Sort, Novel Ti-Zr-Hf-Fe Nanostructured Alloy for Biomedical Applications, Materials, 2013, 11(6), p 4930–4945Google Scholar
  40. 40.
    T. Kokubo and H. Takadama, How Useful is SBF in Predicting In Vivo Bone Bioactivity, Biomaterials, 2006, 27(15), p 2907–2915Google Scholar
  41. 41.
    Q. Guo, Y. Zhan, H. Mo, and G. Zhang, Aging Response of the Ti-Nb System Biomaterials with β-Stabilizing Elements, Mater. Des., 2010, 31(10), p 4842–4846Google Scholar
  42. 42.
    S. Banumathy, K.S. Prasad, R.K. Mandal et al., Effect of Thermomechanical Processing on Evolution of Various Phases in Ti-Nb Alloys, Bull. Mater. Sci., 2011, 34(7), p 1421–1434Google Scholar
  43. 43.
    X. Tang, T. Ahmed, and H.J. Rack, Phase Transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr Alloys, J. Mater. Sci., 2000, 35(7), p 1805–1811Google Scholar
  44. 44.
    S.J. Li, R. Yang, M. Niinomi, Y.L. Hao, Y.Y. Cui, and Z.X. Guo, Phase Transformation During Aging and Resulting Mechanical Properties of Two Ti-Nb-Ta-Zr Alloys, Mater. Sci. Technol., 2005, 21(6), p 678–686Google Scholar
  45. 45.
    M. Geetha, A.K. Singh, A.K. Gogia, and R. Asokamani, Effect of Thermomechanical Processing on Evolution of Various Phases in Ti-Nb-Zr Alloys, J. Alloys Compd., 2004, 384(1–2), p 131–144Google Scholar
  46. 46.
    J. Lin, S. Ozan, K. Munir, K. Wang, X. Tong, Y. Li, G. Li, and C. Wen, Effects of Solution Treatment and Aging on the Microstructure, Mechanical Properties, and Corrosion Resistance of a β Type Ti-Ta-Hf-Zr Alloy, RSC Adv., 2017, 7(20), p 12309–12317Google Scholar
  47. 47.
    E.B. Taddei, V.A.R. Henriques, R.M. da Silva, and C.A.A. Cairo, Age-hardening of Ti-35Nb-7Zr-5Ta Alloy for Orthopaedic Implants, J. Mater. Res., 2007, 10(3), p 289–292Google Scholar
  48. 48.
    M.T. Mohammed and M. GEETHA, Effect of Thermo-Mechanical Processing on Microstructure and Electrochemical Behavior of Ti-Nb-Zr-V New Metastable β Titanium Biomedical Alloy, Trans. Nonferr. Met. Soc. China, 2015, 25(3), p 759–769Google Scholar
  49. 49.
    T. Furuhara, T. Maki, and T. Makino, Microstructure Control by Thermomechanical Processing in β-Ti-15-3 alloy, J. Mater. Process. Technol., 2001, 117(3), p 318–323Google Scholar
  50. 50.
    Y. Mantani and M. Tajima, Phase Transformation of Quenched α″ Martensite by Aging in Ti-Nb Alloys, Mater. Sci. Eng. A, 2006, 438, p 315–319Google Scholar
  51. 51.
    Y.L. Hao, R. Yang, M. Niinomi, D. Kuroda, Y.L. Zhou, K. Fukunaga, and A. Suzuki, Young’s Modulus and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr in Relation to α″ Martensite, Metall. Mater. Trans. A, 2002, 33(10), p 3137–3144Google Scholar
  52. 52.
    D. Kuroda, H. Kawasaki, A. Yamamoto et al., Mechanical Properties and Microstructures of New Ti-Fe-Ta and Ti-Fe-Ta-Zr System Alloys, Mater. Sci. Eng. C, 2005, 25(3), p 312–320Google Scholar
  53. 53.
    J. Slokar, T. Matkovic, and P. Matkovic, Alloy Design and Property Evaluation of New Ti-Cr-Nb Alloys, Mater. Des., 2012, 33, p 26–30Google Scholar
  54. 54.
    Z.B. Zhou, F.E.I. Yue, M.-J. Lai, H.-C. Kou, H. Chang, G.-Q. Shang, Z.-S. Zhu, J.-S. Li, and Z.H.O.U. Lian, Microstructure and Mechanical Properties of New Metastable β Type Titanium Alloy, Trans. Nonferr. Met. Soc. China, 2010, 20(12), p 2253–2258Google Scholar
  55. 55.
    L. Wang, Z. Lin, X. Wang, Q. Shi, W. Yin, D. Zhang, Z. Liu, and W. Lu, Effect of Aging Treatment on Microstructure and Mechanical Properties of Ti27Nb2Ta3Zr β Titanium Alloy for Implant Applications, Mater. Trans., 2014, 55(1), p 141–146Google Scholar
  56. 56.
    S. Xu, L.I.U. Yong, L.I.U. Bin, W.A.N.G. Xin, and Z. Chen, Microstructural Evolution and Mechanical Properties of Ti-5Al-5Mo-5V-3Cr Alloy by Heat Treatment with Continuous Temperature Gradient, Trans. Nonferr. Met. Soc. China, 2018, 28(2), p 273–281Google Scholar
  57. 57.
    S. Shekhar, R. Sarkar, S.K. Kar, and A. Bhattacharjee, Effect of Solution Treatment and Aging on Microstructure and Tensile Properties of High Strength β Titanium Alloy, Ti-5Al-5V-5Mo-3Cr, Mater. Des., 2015, 66(Part B), p 596–610Google Scholar
  58. 58.
    M.T. Mohammed, Z.A. Khan, G. Manivasagam, and A.N. Siddiquee, Influence of Thermomechanical Processing on Biomechanical Compatibility and Electrochemical Behavior of New Near Beta Alloy, Ti-20.6Nb-13.6Zr-0.5V, Int. J. Nanomed., 2015, 10(1), p 223Google Scholar
  59. 59.
    P. Majumdar, S.B. Singh, and M. Chakraborty, The Role of Heat Treatment on Microstructure and Mechanical Properties of Ti-13Zr-13Nb Alloy for Biomedical Load Bearing Applications, J. Mech. Behav. Biomed. Mater., 2011, 4(7), p 1132–1144Google Scholar
  60. 60.
    M.T. Mohammed, Z.A. Khan, and A.N. Siddiquee, Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2014, 8(8), p 726–731Google Scholar
  61. 61.
    R. Chelariu, G. Bolat, J. Izquierdo, D. Mareci, D.M. Gordin, T. Gloriant, and R.M. Souto, Metastable Beta Ti-Nb-Mo Alloys with Improved Corrosion Resistance in Saline Solution, Electrochim. Acta, 2014, 137, p 280–289Google Scholar
  62. 62.
    E. Alkhateeb and S. Virtanen, Influence of Surface Self-modification in Ringer’s Solution on the Passive Behavior of Titanium, J. Biomed. Mater. Res. Part A, 2005, 75(4), p 934–940Google Scholar
  63. 63.
    Q. Li, J. Li, G. Ma, X. Liu, and D. Pan, Influence of ω Phase Precipitation on Mechanical Performance and Corrosion Resistance of Ti-Nb-Zr Alloy, Mater. Des., 2016, 111, p 421–428Google Scholar
  64. 64.
    J. Lu, Y. Zhao, H. Niu, Y. Zhang, Y. Du, W. Zhang, and W. Huo, Electrochemical Corrosion Behavior and Elasticity Properties of Ti-6Al-xFe Alloys for Biomedical Applications, Mater. Sci. Eng. C, 2016, 62, p 36–44Google Scholar
  65. 65.
    S. Karimi, T. Nickchi, and A. Alfantazi, Effects of Bovine Serum Albumin on the Corrosion Behavior of AISI, 316L, Co-28Cr-6Mo, and Ti-6Al-4V Alloys in Phosphate Buffered Saline Solutions, Corros. Sci., 2011, 53, p 3262–3272Google Scholar
  66. 66.
    N.W. Dai, L.C. Zhang, J.X. Zhang, X. Zhang, Q.Z. Ni, Y. Chen, M.L. Wu, and C. Yang, Distinction in Corrosion Resistance of Selective Laser Melted Ti-6Al-4V Alloy on Different Planes, Corros. Sci., 2016, 111, p 703–710Google Scholar
  67. 67.
    A.K. Shukla and R. Balasubramaniam, Effect of Surface Treatment on Electrochemical Behavior of CP Ti, Ti-6Al-4V and Ti-13Nb-13Zr Alloys in Simulated Human Body Fluid, Corros. Sci., 2006, 48, p 1696–1720Google Scholar
  68. 68.
    G. Bolat, D. Mareci, R. Chelariu, J. Izquierdo, S. González, and R.M. Souto, Investigation of the Electrochemical Behaviour of TiMo Alloys in Simulated Physiological Solutions, Electrochim. Acta, 2013, 113, p 470–480Google Scholar
  69. 69.
    T. Nishimura, S. Tamilselvi, X.H. Min, and K. Tsuzaki, Corrosion Resistance of Aging Heat-Treated Ti-8Mo-5Fe Alloy in Highly Acidic Chloride Solution, Mater. Trans., 2010, 51, p 1553–1559Google Scholar
  70. 70.
    E.N. Codaro, R.Z. Nakazato, A.L. Horovistiz, L.M.F. Ribeiro, R.B. Ribeiro, and L.D.O. Hein, An Image Analysis Study of Pit Formation on Ti-6Al-4V, J. Mater. Sci. Eng. A, 2003, 341(1–2), p 202–210Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Center of Research Excellence in Corrosion, Research InstituteKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia
  2. 2.Department of Mechanical EngineeringKing Fahd University of Petroleum and Minerals (KFUPM)DhahranSaudi Arabia

Personalised recommendations