Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 3, pp 1822–1832 | Cite as

Statistical Strength Analysis of Dissimilar AA2024-T6 and AA6061-T6 Friction Stir Welded Joints

  • Reza TaghiabadiEmail author
  • Niloufar Aria
Article
  • 90 Downloads

Abstract

Friction stir welding has been emerged as one of the most reliable processes for joining aerospace-grade aluminum alloys. However, limited studies have been focused so far on the reliability of these joint types. In this study, the effect of welding parameters (traverse and rotation speeds) on the fracture strength of dissimilar AA2024-T6 and AA6061-T6 friction stir welded joints was statistically analyzed by the Weibull approach. Based on the results, the Weibull approach was found to be much more accurate than widely used standard deviation for evaluating the scatter of the fracture strength data. The improper selection of the process parameters not only decreased the average fracture strengths of the joints, but also scattered them around the mean value, and increased the failure probability under the same applied tension. According to the microscopic and macroscopic examinations and microhardness measurements, although the microstructural inhomogeneities caused by the improper setting of the welding parameters negatively affected the joints hardness and fracture strength, the welding defects were likely to be the most responsible factor affecting the fracture strength and its reliability.

Keywords

AA2024 AA6061 dissimilar friction stir welding reliability Weibull 

Notes

References

  1. 1.
    S. Darwish, Analysis of Weld-Bonded Dissimilar Materials, Int. J. Adhes. Adhes., 2004, 24, p 347–354CrossRefGoogle Scholar
  2. 2.
    C. Jonckheerea, B. Meestera, A. Denquinb, and A. Simara, Torque, Temperature and Hardening Precipitation Evolution in Dissimilar Friction Stir Welds Between 6061-T6 and 2014-T6 Aluminum Alloys, J. Mater. Process. Technol., 2013, 213, p 826–837CrossRefGoogle Scholar
  3. 3.
    S.T. Amancio-Filhoa, S. Sheikhi, J.F. Dos Santosa, and C. Bolfarini, Preliminary Study on the Microstructure and Mechanical Properties of Dissimilar Friction Stir Welds in Aircraft Aluminum Alloys 2024-T351 and 6056-T4, J. Mater. Process. Technol., 2008, 206, p 132–142CrossRefGoogle Scholar
  4. 4.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., 2005, 50, p 1–78CrossRefGoogle Scholar
  5. 5.
    P. Vijaya Kumar, G. Madhusudhan Reddy, and K. Srinivasa Rao, Microstructure, Mechanical and Corrosion Behavior of High Strength AA7075 Aluminum Alloy Friction Stir Welds-Effect of Post Weld Heat Treatment, Def. Technol., 2015, 11(4), p 362–369CrossRefGoogle Scholar
  6. 6.
    J.F. Guo, H.C. Chen, C.N. Sun, G. Bi, Z. Sun, and J. Wei, Friction Stir Welding of Dissimilar Materials Between AA6061 and AA7075 Al Alloys Effects of Process Parameters, Mater. Des., 2014, 56, p 185–192CrossRefGoogle Scholar
  7. 7.
    R.I. Rodriguez, J.B. Jordon, P.G. Allison, T. Rushing, and L. Garcia, Microstructure and Mechanical Properties of Dissimilar Friction Stir Welding of 6061-to-7050 Aluminum Alloys, Mater. Des., 2015, 83, p 60–65CrossRefGoogle Scholar
  8. 8.
    S. Malopheyev, I. Vysotskiy, V. Kulitskiy, S. Mironov, and R. Kaibyshev, Optimization of Processing-Microstructure-Properties Relationship in Friction-Stir Welded 6061-T6 Aluminum Alloy, Mater. Sci. Eng. A, 2016, 662A, p 136–143CrossRefGoogle Scholar
  9. 9.
    I. Radisavljevi, A. Zivkovic, N. Radovic, and V. Grabulov, Influence of FSW Parameters on Formation Quality and Mechanical Properties of Al 2024-T351 Butt Welded Joints, Trans. Nonferrous Met. Soc. China, 2013, 23, p 3525–3539CrossRefGoogle Scholar
  10. 10.
    A.K. Lakshminarayanan, V. Balasubramanian, and K. Elangovan, Effect of Welding Processes on Tensile Properties of AA6061 Aluminum Alloy Joints, Int. J. Adv. Manuf. Technol., 2009, 40, p 286–296CrossRefGoogle Scholar
  11. 11.
    M. Ghaffarpour, S. Kolahgar, B.M. Dariani, and K. Dehghani, Evaluation of Dissimilar Welds of 5083-H12 and 6061-T6 Produced by Friction Stir Welding, Met. Mater. Trans. A, 2013, 44A, p 3697–3707CrossRefGoogle Scholar
  12. 12.
    S.A. Khodir and T. Shibayanagi, Friction Stir Welding of Dissimilar AA2024 and AA7075 Aluminum Alloys, Mater. Sci. Eng. B, 2008, 148, p 82–87CrossRefGoogle Scholar
  13. 13.
    M. Ilangovan, S. Rajendra Boopathy, and V. Balasubramanian, Microstructure and Tensile Properties of Friction Stir Welded Dissimilar AA6061-AA5086 Aluminum Alloy Joints, Trans. Nonferrous Met. Soc. China, 2015, 25, p 1080–1090CrossRefGoogle Scholar
  14. 14.
    H.J. Liu, H. Fujii, and K. Nogi, Friction Stir Welding Characteristics of 2017-T351 Aluminum Alloy Sheet, J. Mater. Sci., 2005, 40, p 3297–3299CrossRefGoogle Scholar
  15. 15.
    P. Cavaliere, A. De Santis, F. Panella, and A. Squillace, Effect of Welding Parameters on Mechanical and Microstructural Properties of Dissimilar AA6082–AA2024 Joints Produced by Friction Stir Welding, Mater. Des., 2009, 30(3), p 609–616CrossRefGoogle Scholar
  16. 16.
    Y. Song, X. Yang, L. Cui, X. Hou, Z. Shen, and Y. Xu, Defect Features and Mechanical Properties of Friction Stir Lap Welded Dissimilar AA2024–AA7075 Aluminum Alloy Sheets, Mater. Des., 2014, 5, p 9–18CrossRefGoogle Scholar
  17. 17.
    R. Palanivel, P.K. Mathews, N. Murugan, and I. Dinaharan, Effect of Tool Rotational Speed and Pin Profile on Microstructure and Tensile Strength of Dissimilar Friction Stir Welded AA5083-H111 and AA6351-T6 Aluminum Alloys, Mater. Des., 2012, 40, p 7–16CrossRefGoogle Scholar
  18. 18.
    M. Koilraj, V. Sundareswaran, S. Vijayan, and S.R. Koteswara Rao, Friction Stir Welding of Dissimilar Aluminum Alloys AA2219 to AA5083: Optimization of Process Parameters Using Taguchi Technique, Mater. Des., 2012, 42, p 1–7CrossRefGoogle Scholar
  19. 19.
    D. Venkateswarlu, P.N. Rao, M.M. Mahapatra, S.P. Harsha, and N.R. Mandal, Processing and Optimization of Dissimilar Friction Stir Welding of AA 2219 and AA 7039 Alloys, J. Mater. Eng. Perform., 2015, 24(12), p 4809–4824CrossRefGoogle Scholar
  20. 20.
    I. Kalemba, C. Hamilton, and S. Dymek, Natural Aging in Friction Stir Welded 7136-T76 Aluminum Alloy, Mater. Des., 2014, 60, p 295–301CrossRefGoogle Scholar
  21. 21.
    P. Podrzaj, B. Jerman, and D. Klobcar, Welding Defects at Friction Stir Welding, Metallurgia, 2015, 54(2), p 387–389Google Scholar
  22. 22.
    N. Zaman Khan, A.N. Siddiquee, Z.A. Khan, and S.K. Shihab, Investigations on Tunnelling and Kissing Bond Defects in FSW Joints for Dissimilar Aluminum Alloys, J. Alloys Compd., 2015, 648(5), p 360–367CrossRefGoogle Scholar
  23. 23.
    J. Campbell, Complete Casting Handbook: Metal Casting Processes, Techniques and Design, Butterworth Heinemann, Oxford, 2011Google Scholar
  24. 24.
    H. Al-Kazzaz, X. Cao, M. Jahazi, and M. Medraj, Reliability of Laser Welding Process for ZE41A-T5 Magnesium Alloy Sand Casting, Mater. Trans., 2008, 49(4), p 774–781CrossRefGoogle Scholar
  25. 25.
    P.S. Effertz, V. Infante, L. Quintino, U. Suhuddin, S. Hanke, and J.F. Dos Santos, Fatigue Life Assessment of Friction Spot Welded 7050-T76 Aluminum Alloy Using Weibull Distribution, Int. J. Fatigue, 2016, 87, p 381–390CrossRefGoogle Scholar
  26. 26.
    C. Lin, F. Hung, F. Lui, and L. Chen, Weibull Statistics of Tensile-Shear Strength of 5083 Aluminum Alloy After Friction Stir Spot Welding, Mater. Trans., 2015, 56(1), p 54–60CrossRefGoogle Scholar
  27. 27.
    M. Balasubramanian and R. Kumar, “Prediction of Reliability in Friction Welded Dissimilar Joints by Weibull Distribution”, Proceedings of ASME. 57359, Vol. 2A: Advanced Manufacturing, Houston, Texas, USA (2015) IMECE2015-50621, V02AT02A047Google Scholar
  28. 28.
    C.W. Yang, F.Y. Hung, T.S. Lui, and J.Y. Juo, Weibull Statistics for Evaluating Failure Behaviours and Joining Reliability of Friction Stir Spot Welded 5052 Aluminum Alloy, Mater. Trans., 2009, 50(1), p 145–151CrossRefGoogle Scholar
  29. 29.
    A. Cias and A. Czarski, The Use of Weibull Statistics to Quantify Property Variability in Fe-3Mn-0.8C Sintered-Hardened Structurally Inhomogeneous Steels, Arch. Metall. Mater., 2013, 58(4), p 1045–1052CrossRefGoogle Scholar
  30. 30.
    W. Weibull, A Statistical Distribution Function of Wide Applicability, J. Appl. Mech., 1951, 18, p 293–297Google Scholar
  31. 31.
    R.S. Mishra and M.W. Mahoney, Friction Stir Welding and Processing, ASM International, Material Park, 2007Google Scholar
  32. 32.
    T. Luijendijk, Welding of Dissimilar Aluminum Alloys, J. Mater. Process. Technol., 2000, 103, p 29–35CrossRefGoogle Scholar
  33. 33.
    B. Fu, G. Qin, F. Li, X. Meng, J. Zhang, and C. Wu, Friction Stir Welding Process of Dissimilar Metals of 6061-T6 Aluminum Alloy to AZ31B Magnesium Alloy, J. Mater. Process. Technol., 2015, 218, p 38–47CrossRefGoogle Scholar
  34. 34.
    A.S. Babu and V. Jayabalan, Statistical Analysis of the Fracture Strength of Aluminum-Alumina (Al2O3) Particulate Composite, J. Mater. Sci., 2010, 45, p 6586–6592CrossRefGoogle Scholar
  35. 35.
    K. Khalili and K. Kromp, Statistical Properties of Weibull Estimators, J. Mater. Sci., 1991, 26, p 6741–6752CrossRefGoogle Scholar
  36. 36.
    M. Tiryakioglu, D. Hudak, and G. Okten, On Evaluating Weibull Fits to Mechanical Testing Data, Mater. Sci. Eng., 2009, 527A, p 397–399CrossRefGoogle Scholar
  37. 37.
    S.M. Verma and J.P. Mishra, A Critical Review of Friction Stir Welding Process, DAAAM Int. Sci. Nat. Inst. Technol. India, 2015, 249, p 266Google Scholar
  38. 38.
    H. Bisadi, A. Tavakoli, M. Tour Sangsaraki, and K. Tour Sangsaraki, The Influences of Rotational and Welding Speeds on Microstructures and Mechanical Properties of Friction Stir Welded Al 5083 and Commercially Pure Copper Sheets Lap Joints, Mater. Des., 2013, 43, p 80–88CrossRefGoogle Scholar
  39. 39.
    A.S. Sedmak, R. Kumar, S. Chattopadhyaya, S. Hloch, S.S. Tadic, A.A. Djurdjevic, I.R. Cekovic, and E. Docceva, Heat Input Effect of Friction Stir Welding on Aluminum Alloy AA6061-T6 Welded Joint, Ther. Sci., 2016, 20(2), p 637–641CrossRefGoogle Scholar
  40. 40.
    A.A. Zadpoor, J. Sinke, and R. Pieters, Mechanical Properties and Microstructure of Friction Stir Welded Tailor-Made Blanks, Mater. Sci. Eng. A, 2008, 494A, p 281–290CrossRefGoogle Scholar
  41. 41.
    A.A. Zadpoor, J. Sinke, and P. Benedictus, Global and Local Mechanical Properties and Microstructure of Friction Stir Welds with Dissimilar Materials and/or Thicknesses, Met. Mater. Trans. A, 2010, 41A, p 3365–3378CrossRefGoogle Scholar
  42. 42.
    P. Periyasamy, B. Mohan, V. Balasubramanian, and S. Venugopal, Effect of Heat Input on Mechanical and Metallurgical Properties of Friction Stir Welded AA6061-20% SiC MMCs, Int. J. Manuf. Sci. Technol., 2011, 5(2), p 135–150Google Scholar
  43. 43.
    P. Mastanaiah, A. Sharma, and G.M. Reddy, Dissimilar Friction Stir Welds in AA2219-AA5083 Aluminum Alloys: Effect of Process Parameters on Material Inter-Mixing, Defect Formation, and Mechanical Properties, Trans. Indian. Ins. Met., 2015,  https://doi.org/10.1007/s12666-015-0694-6 CrossRefGoogle Scholar
  44. 44.
    H. Liu, H. Zhang, Q. Pan, and L. Yu, Effect of Friction Stir Welding Parameters on Microstructural Characteristics and Mechanical Properties of 2219-T6 Aluminum Alloy Joints, Int. J. Mater. Form, 2012, 5, p 235–241CrossRefGoogle Scholar
  45. 45.
    S.A. Khodir, T. Shibayanagi, and M. Naka, Microstructural and Mechanical Properties of Friction Stir Welded AA2024-T3 Aluminum Alloy, Mater. Trans., 2006, 47(1), p 185–193CrossRefGoogle Scholar
  46. 46.
    S. Malarvizhi and V. Balasubramanian, Effect of Welding Process on AA2219 Aluminum Alloy Joint Properties, Trans. Nonferrous Met. Soc. China, 2011, 21, p 962–973CrossRefGoogle Scholar
  47. 47.
    Y. Li, L.E. Murr, and J.C. McClure, Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum to 6061 Aluminum, Mater. Sci. Eng. A, 1999, 271, p 213–223CrossRefGoogle Scholar
  48. 48.
    H. Barekatian, M. Kazeminezhad, and A.H. Kokabi, Microstructure and Mechanical Properties in Dissimilar Butt Friction Stir Welding of Severely Plastic Deformed Aluminum AA1050 and Commercially Pure Copper Sheets, J. Mater. Sci. Technol., 2014, 30(8), p 826–834CrossRefGoogle Scholar
  49. 49.
    K.S. Arora, S. Pandey, M. Schaper, and R. Kumar, Microstructure Evolution During Friction Stir Welding, J. Mater. Technol., 2010, 26(8), p 747–753CrossRefGoogle Scholar
  50. 50.
    H. Jamshidi Aval, S. Serajzadeh, A.H. Kokabi, and A. Loureiro, Effect of Tool Geometry on Mechanical and Microstructural Behaviours in Dissimilar Friction Stir Welding of AA 5086–AA 6061, Sci. Technol. Weld. Join., 2011, 16(7), p 597–604CrossRefGoogle Scholar
  51. 51.
    Z. Zhang, B.L. Xiao, and Z.Y. Ma, Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Welded 2219Al-T6 Joints, J. Mater. Sci., 2012, 47, p 4075–4086CrossRefGoogle Scholar
  52. 52.
    Y.S. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Met. Mater. Trans. A, 2002, 33A, p 625–635CrossRefGoogle Scholar
  53. 53.
    C.A.E. Olea, L. Roldo, T.R. Strohaecker, and J.F. Dos Santos, Friction Stir Welding of Precipitate Hardenable Aluminum Alloys: A Review, Weld. World, 2006, 50(11-12), p 78–87CrossRefGoogle Scholar
  54. 54.
    L.E. Murr, G. Liu, and J.C. McClure, A TEM Study of Precipitation and Related Microstructures in Friction-Stir-Welded 6061 Aluminium, J. Mater. Sci., 1998, 33, p 1243–1251CrossRefGoogle Scholar
  55. 55.
    Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan, Microstructural Evolution of 6063 Aluminum during Friction-Stir Welding, Met. Mater. Trans. A, 1999, 30A, p 2429–2437CrossRefGoogle Scholar
  56. 56.
    S.A. Khodir and S. Toshiba, Microstructure and Mechanical Properties of Friction Stir Welded Similar and Dissimilar Joints of Al and Mg Alloys, Trans. JWRE, 2007, 36(1), p 27–40Google Scholar
  57. 57.
    W.B. Lee, Y.M. Yeon, and S.B. Jung, Mechanical Properties Related to Microstructural Variation of 6061 Al Alloy Joints by Friction Stir Welding, Mater. Trans., 2004, 45(2), p 1700–1705CrossRefGoogle Scholar
  58. 58.
    W.F. Xu, J.H. Liu, G.H. Luan, and C.L. Dong, Microstructure and Mechanical Properties of Friction Stir Welded Joints in 2219-T6 Aluminum Alloy, Mater. Des., 2009, 30, p 3460–3467CrossRefGoogle Scholar
  59. 59.
    D.R. Ni, D.L. Chen, D. Wang, B.L. Xiao, and Z.Y. Ma, Tensile Properties and Strain-Hardening Behaviour of Friction Stir Welded SiCp/AA2009 Composite Joints, Mater. Sci. Eng. A, 2014, 608A, p 1–10CrossRefGoogle Scholar
  60. 60.
    ASM International Handbook Committee, ASM Handbook, Fractography, Vol 12, ASM International, Materials Park, 1987Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyImam Khomeini International UniversityQazvinIran

Personalised recommendations