Effects of Nb on Superelasticity and Low Modulus Properties of Metastable β-Type Ti-Nb-Ta-Zr Biomedical Alloys

  • Juan Chen
  • Fengcang MaEmail author
  • Ping Liu
  • Chaohu Wang
  • Xinkuan Liu
  • Wei Li
  • Qingyou Han


In this work, a series of Ti-xNb-2Ta-3Zr (x = 25, 30, 35, 40 wt.%) alloys are designed, and the transformation of β-phase to α″ martensitic, β-phase stability, microstructure, mechanical properties and corrosion performance of these alloys are investigated. The phase analysis shows as the Nb content increases, the α″ phase in these alloys decreases, while the intensity of the two main peaks β(110) and β(211) of Ti-40Nb-2Ta-3Zr alloy is reduced. These results can be attributed to the variation of β-phase stability caused by Nb element of alloy and cold rolling process. The mechanical properties test shows that the elastic modulus (52 GPa) of the Ti-35Nb-2Ta-3Zr alloy is the lowest and the elongation (18.8%) is the maximum. In addition, the alloy is susceptible to β-phase elastic deformation and stress-induced martensitic transformation resulting in the highest recovery strain of the alloy (66.87%). The polarization curves show that the Ti-35Nb-2Ta-3Zr alloy has the highest corrosion potential (− 0.34 V) and the lowest corrosion current density (0.21 μA cm−2) exhibiting the best corrosion resistance.


low modulus martensitic transformation metastable β titanium alloy superelasticity Ti-Nb alloys 



The authors acknowledge financial support provided by National Natural Science Foundation of China (Grant No. 51771119), Natural Science Foundation of Shanghai (Grant No. 17ZR1419600) and Scientific and Technological Key Project of Shanghai (Grant Nos. 11441900500 and 11441900501).


  1. 1.
    J.Y. Zhang, F. Sun, Y.L. Hao, N. Gazdecki et al., Influence of Equiatomic Zr/Nb Substitution on Superelastic Behavior of Ti-Nb-Zr Alloy, Mater. Sci. Eng. A, 2013, 563, p 78–85CrossRefGoogle Scholar
  2. 2.
    Y.J. Liu, X.P. Li, L.C. Zhang, and T.B. Sercombe, Processing and Properties of Topologically Optimised Biomedical Ti-24Nb-4Zr-8Sn Scaffolds Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2015, 642, p 268–278CrossRefGoogle Scholar
  3. 3.
    S. Miyazaki, H.Y. Kim, and H. Hosoda, Development and Characterization of Ni-Free Ti-Base Shape Memory and Superelastic Alloys, Mater. Sci. Eng. A, 2006, 438-440, p 18–24CrossRefGoogle Scholar
  4. 4.
    L.Q. Wang, G.J. Yang, H.B. Yang et al., Microstructure and Mechanical Properties of TiNbZr Alloy During Cold Drawing, Rare Metal Mat. Eng., 2009, 38, p 579–582CrossRefGoogle Scholar
  5. 5.
    F. Kafkas and T. Ebel, Metallurgicaland Mechanical Properties of Ti-24Nb-4Zr-8Sn Alloy Fabricated by Metal Injection Molding, J. Alloys Compd., 2014, 617, p 359–366CrossRefGoogle Scholar
  6. 6.
    W.F. Ho, C.H. Pan, S.C. Wu, and H.C. Hsu, Mechanical Properties and Deformation Behavior of Ti-5Cr-xFe Alloys, J. Alloys Compd., 2009, 472, p 546–550CrossRefGoogle Scholar
  7. 7.
    K.A. Nazari, A. Nouri, and T. Hilditch, Mechanical Properties and Microstructure of Powder Metallurgy Ti-xNb-yMo Alloys for Implant Materials, Mater. Des., 2015, 88, p 1164–1174CrossRefGoogle Scholar
  8. 8.
    S.X. Liang, X.J. Feng, L.X. Yin et al., Development of a New β Ti Alloy with Low Modulus and Favorable Plasticity for Implant Material, Mater. Sci. Eng. C, 2016, 61, p 338–343CrossRefGoogle Scholar
  9. 9.
    K.P. Zhu, J.W. Zhu, and H.L. Qu, Development Status of Foreign Biomedical Titanium Alloys, Rare Metal Mat. Eng., 2012, 41, p 2058–2063Google Scholar
  10. 10.
    L.Q. Wang, W.J. Lu, J.N. Qin et al., Microstructure and Mechanical Properties of Cold-Rolled TiNbTaZr Biomedical β Titanium Alloy, Mater. Sci. Eng. A, 2008, 490, p 421–426CrossRefGoogle Scholar
  11. 11.
    Y. Al-Zain, H.Y. Kim, H. Hosoda, T.H. Nam, and S. Miyazaki, Shape Memory Properties of Ti-Nb-Mo Biomedical Alloys, Acta Mater., 2010, 60, p 4212–4223CrossRefGoogle Scholar
  12. 12.
    J.Y. Zhang, F. Sun, Y.L. Hao et al., Influence of Equiatomic Zr/Nb Substitution on Superelastic Behavior of Ti-Nb-Zr Alloy, Mater. Sci. Eng. A, 2013, 563, p 78–85CrossRefGoogle Scholar
  13. 13.
    B.L. Wang, Y.F. Zheng, and L.C. Zhao, Effects of Sn Content on the Microstructure, Phase Constitution and Shape Memory Effect of Ti-Nb-Sn Alloys, Mater. Sci. Eng. A, 2008, 486, p 146–151CrossRefGoogle Scholar
  14. 14.
    L.Q. Wang, W.J. Lu, J.N. Qin et al., Influence of Cold Deformation on Martensite Transformation and Mechanical Properties of Ti-Nb-Ta-Zr Alloy, J. Alloys Compd., 2009, 469, p 512–518CrossRefGoogle Scholar
  15. 15.
    X.H. Min, S. Emura, N. Sekido, T. Nishimura, K. Tsuchiya, and K. Tsuzaki, Effects of Fe Addition on Tensile Deformation Mode and Crevice Corrosion Resistance in Ti-15Mo Alloy, Mater. Sci. Eng. A, 2010, 527, p 2693–2701CrossRefGoogle Scholar
  16. 16.
    L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, and T.B. Sercombe, Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy, Scr. Mater., 2011, 65, p 21–24CrossRefGoogle Scholar
  17. 17.
    E. Bertrand, T. Gloriant, D.M. Gordin et al., Synthesis and Characterisation of a New Superelastic Ti-25Ta-25Nb Biomedical Alloy, J. Mech. Behav. Biomed. Mater., 2010, 3, p 559–564CrossRefGoogle Scholar
  18. 18.
    Y. Cui, Y. Li, K. Luo, and H.B. Xu, Microstructure and Shape Memory Effect of Ti-20Zr-10Nb Alloy, Mater. Sci. Eng. A, 2010, 527, p 652–656CrossRefGoogle Scholar
  19. 19.
    H.Y. Kim, H. Satoru, J.I. Kim et al., Mechanical Properties and Shape Memory Behavior of Ti-Nb Alloys, Mater. Trans., 2004, 45, p 2443–2448CrossRefGoogle Scholar
  20. 20.
    O. Yasuya, O. Toshitaka, N. Kiyomichi et al., Effects of ω-Phase Precipitation on β → α, α″ Transformations in a Metastable β Titanium Alloy, Mater. Sci. Eng. A, 2001, 312, p 182–188CrossRefGoogle Scholar
  21. 21.
    S. Neelakantan, P.E.J. Rivera-Diaz-del-Castillo, and S.V.D. Zwaag, Prediction of the Martensite Start Temperature for β Titanium Alloys as a Function of Composition, Scripta Mater., 2009, 60, p 611–614CrossRefGoogle Scholar
  22. 22.
    D. Kuroda, M. Niinomi, M. Morinaga et al., Design and Mechanical Properties of New β type Titanium Alloys for Implant Materials, Mater. Sci. Eng. A, 1998, 243, p 244–249CrossRefGoogle Scholar
  23. 23.
    M. Abde-Hady, K. Hinoshita, and M. Morinaga, General Approach To phase Stability and Elastic Properties of β-type Ti-Alloys Using Electronic Parameters, Scripta Mater., 2006, 55, p 477–480CrossRefGoogle Scholar
  24. 24.
    T. Zhou, M. Aindow, S.P. Alpay et al., Pseudo-Elastic Deformation Behavior in a Ti/Mo-Based Alloy, Scripta Mater., 2005, 50, p 343–348CrossRefGoogle Scholar
  25. 25.
    C.D. Rabadia, Y.J. Liu, G.H. Cao et al., High-Strength β Stabilized Ti-Nb-Fe-Cr Alloys with Large Plasticity, Mater. Sci. Eng. A, 2018, 732, p 368–377CrossRefGoogle Scholar
  26. 26.
    C.D. Rabadia, Y.J. Liu, L. Wang, H. Sun, and L.C. Zhang, Laves Phase Precipitation in Ti-Zr-Fe-Cr Alloys with High Strength and Large Plasticity, Mater. Des., 2018, 154, p 228–238CrossRefGoogle Scholar
  27. 27.
    H. Yang, J. Wen, M. Quan, and J. Wang, Evaluation of the Volume Fraction of Nanocrystals Devitrified in Al-Based Amorphous Alloys, J. Non-Cryst. Solids, 2009, 355, p 235–238CrossRefGoogle Scholar
  28. 28.
    D.J. Lin, J.H. Chernin, and C.P. Ju, Structure and Properties of Ti-7.5Mo-xFe Alloys, Biomaterials, 2002, 23, p 1723–1730CrossRefGoogle Scholar
  29. 29.
    Y.L. Zhou, M. Niinomi, and T. Akahori, Effects of Ta Content on Young’s Modulus and Tensile Properties of Binary Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng. A, 2004, 371, p 283–290CrossRefGoogle Scholar
  30. 30.
    S. Ehtemam-Haghighi, Y.J. Liu, G.H. Cao, and L.C. Zhang, Influence of Nb on the β → α″ Martensitic Phase Transformation and Properties of the Newly Designed Ti-Fe-Nb Alloys, Mater. Sci. Eng. C, 2016, 60, p 503–510CrossRefGoogle Scholar
  31. 31.
    H.Y. Kim, S. Hashimoto, J.I. Kim, T. Inamura, H. Hosoda, and S. Miyazaki, Effect of Ta Addition on Shape Memory Behavior of Ti-22Nb Alloy, Mater. Sci. Eng. A, 2006, 417, p 120–128CrossRefGoogle Scholar
  32. 32.
    C. Li, Y. Zhan, and W. Jiang, β-Type Ti-Mo-Si Ternary Alloys Designed for Biomedical Applications, Mater. Des., 2012, 34, p 479–482CrossRefGoogle Scholar
  33. 33.
    W. Xu, K.B. Kim, J. Das, M. Calin, and J. Eckert, Phase Stability and Its Effect on the Deformation Behavior of Ti-Nb-Ta-In/Cr β Alloys, Scr. Mater., 2006, 54, p 1943–1948CrossRefGoogle Scholar
  34. 34.
    Y. Ren, F. Wang, S. Wang, C. Tan, X. Yu, J. Jiang, and H. Cai, Mechanical Response and Effects of β-to-α” Phase Transformation on the Strengthening of Ti-10V-2Fe-3Al During One-Dimensional Shock Loading, Mater. Sci. Eng. A, 2013, 562, p 137–143CrossRefGoogle Scholar
  35. 35.
    H.C. Lin, S.K. Wu, T.S. Chou, and H.P. Kao, The Effects of Cold-Rolling on the Martensitic-Transformation of an Equiatomic TiNi Alloy, Acta Metall., 1991, 39, p 2069–2080CrossRefGoogle Scholar
  36. 36.
    N. Sakaguchi, M. Niinomi, and T. Akahori, Tensile Deformation Behavior of Ti-Nb-Ta-Zr Biomedical Alloys, Mater. Trans., 2005, 45, p 1113–1119CrossRefGoogle Scholar
  37. 37.
    N. Sakaguchi, M. Niinomi, and T. Akahori, Effect of Ta Content on Mechanical Properties of Ti-30Nb-xTa-5Zr, Mater. Sci. Eng. C, 2005, 25, p 370–376CrossRefGoogle Scholar
  38. 38.
    Q. Li, M. Nakai, M. Niinomi et al., Effect of Zr on Super-Elasticity and Mechanical Properties of Ti-24at.%Nb-(0, 2, 4)at.% Zr Alloy Subjected to Aging Treatment, Mater. Sci. Eng. A, 2012, 536, p 197–206CrossRefGoogle Scholar
  39. 39.
    Y. Al-Zain, H.Y. Kim, H. Hosoda et al., Shape Memory Properties of Ti-Nb-Mo Biomedical Alloys, Acta Mater., 2010, 58, p 4212–4223CrossRefGoogle Scholar
  40. 40.
    Y.L. Hao, S.J. Li, S.Y. Sun et al., Effect of Zr and Sn on Young’s Modulus and Superelasticity of Ti-Nb-Based Alloys, Mater. Sci. Eng. A, 2006, 441, p 112–118CrossRefGoogle Scholar
  41. 41.
    W. Mo, S. Lu, D. Li, and Y. Li, Effects of Fillermetal Composition on Themicrostructure and Mechanical Properties for ER NiCrFe-7 Multi-pass Weldments, Mater. Sci. Eng. A, 2013, 582, p 326–337CrossRefGoogle Scholar
  42. 42.
    X. Cao and Q. Zhang, Nanoscale Indentation Behavior of Pseudo-Elastic Ti-Ni Thin Films, J. Alloys Compd., 2008, 465, p 491–496CrossRefGoogle Scholar
  43. 43.
    Y.J. Liu, S.J. Li, L.C. Zhang et al., Early Plastic Deformation Behaviour and Energy Absorption in Porous β-Type Biomedical Titanium Produced by Selective Laser Melting, Scripta Mater., 2018, 153, p 99–103CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Juan Chen
    • 1
  • Fengcang Ma
    • 1
    Email author
  • Ping Liu
    • 1
  • Chaohu Wang
    • 1
  • Xinkuan Liu
    • 1
  • Wei Li
    • 1
  • Qingyou Han
    • 2
  1. 1.School of Materials Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
  2. 2.Department of Mechanical Engineering TechnologyPurdue UniversityWest LafayetteUSA

Personalised recommendations