Journal of Materials Engineering and Performance

, Volume 28, Issue 2, pp 852–862 | Cite as

Corrosion Inhibition Study of Mg-Nd-Y High Strength Magnesium Alloy Using Organic Inhibitor

  • G. R. ArgadeEmail author
  • S. Sanders
  • G. Mohandass
  • A. Alsaleh
  • F. D’Souza
  • T. D. Golden
  • R. S. Mishra


A study on corrosion inhibition mechanism has been performed on rare earth containing WE43 magnesium alloy in 3.5 wt.% NaCl containing 8-hydroxyquinoline (HQ). After an initial increase in corrosion rate due to the formation of sparingly soluble MgQ2 complex, it was found to decrease owing to inhibition effect of the complex. Scanning electrochemical microscopic analysis showed a decrease in corrosion currents and enhanced resistance to pitting corrosion was observed for WE43 samples in the presence of HQ after an exposure of 48 h. With time, the MgQ2 thus generated formed a protective layer on the Mg alloy surface to prevent further corrosion. The corrosion rate of WE43 samples decreased by ~ 50% in HQ containing medium after a constant exposure of 28 days (from ~ 0.22 mg/cm2 day in no HQ to ~ 0.11 mg/cm2 day in HQ). For the WE43 samples in the presence of HQ, formation of MgO and MgQ2 was detected by x-ray photoelectron spectroscopy and x-ray diffraction. Shallower and smaller pits appeared on the magnesium alloy with HQ in the solution as compared to deeper and larger pits on the samples with no HQ in the solution. The significance of metal-complexing organic agent, hydroxyquinoline, in initial acceleration and subsequent prevention of Mg corrosion via protective MgQ2 complex layer formation is demonstrated.


corrosion inhibitor magnesium alloy scanning electrochemical microscopy scanning electron microscopy x-ray photoelectron spectroscopy 



The authors thank the Materials Research Facility (MRF) for providing access to the microscopy, XRD, and XPS facilities. The authors thank Advanced Materials and Manufacturing Processes Institute (AMMPI) for the access to scanning electrochemical microscopic analysis.


  1. 1.
    A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17, p 400–453CrossRefGoogle Scholar
  2. 2.
    G. Song and A. Atrens, Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance, Adv. Eng. Mater., 2003, 5, p 837–858CrossRefGoogle Scholar
  3. 3.
    E. Ghali, W. Dietzel, and K.U. Kainer, General and Localized Corrosion of Magnesium Alloys: A Critical Review, J. Mater. Eng. Perform., 2004, 13, p 7–23CrossRefGoogle Scholar
  4. 4.
    M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and Advances in Magnesium Alloy Corrosion, Prog. Mater Sci., 2017, 89, p 92–193CrossRefGoogle Scholar
  5. 5.
    G. Williams, H.N. McMurray, and R. Grace, Inhibition of Magnesium Localised Corrosion in Chloride Containing Electrolyte, Electrochim. Acta, 2010, 55, p 7824–7833CrossRefGoogle Scholar
  6. 6.
    N.H. Helal and W.A. Badawy, Environmentally Safe Corrosion Inhibition of Mg-Al-Zn Alloy in Chloride Free Neutral Solutions by Amino Acids, Electrochim. Acta, 2011, 56, p 6581–6587CrossRefGoogle Scholar
  7. 7.
    O.V. Karavai, A.C. Bastos, M.L. Zheludkevich, M.G. Taryba, S.V. Lamaka, and M.G.S. Ferreira, Localized Electrochemical Study of Corrosion Inhibition in Microdefects on Coated AZ31 Magnesium Alloy, Electrochim. Acta, 2010, 55, p 5401–5406CrossRefGoogle Scholar
  8. 8.
    I.A. Kartsonakis, S.G. Stanciu, A.A. Matei, E.K. Karaxi, R. Hristu, A. Karantonis, and C.A. Charitidis, Evaluation of the Protective Ability of Typical Corrosion Inhibitors for Magnesium Alloys Towards the Mg ZK30 Variant, Corrs. Sci., 2015, 100, p 194–208CrossRefGoogle Scholar
  9. 9.
    D. Huang, J. Hu, G.L. Song, and X. Guo, Inhibition Effect of Inorganic and Organic Inhibitors on the Corrosion of Mg-10Gd-3Y-0.5Zr Alloy in an Ethylene Glycol Solution at Ambient and Elevated Temperatures, Electrochim. Acta, 2011, 56, p 10166–10178CrossRefGoogle Scholar
  10. 10.
    D. Seifzadeh, H. Basharnavaz, and A. Bezaatpour, A Schiff Base Compound as Effective Corrosion Inhibitor for Magnesium in Acidic Media, Mater. Chem. Phys., 2013, 138, p 794–802CrossRefGoogle Scholar
  11. 11.
    T. Ishizaki, J. Hieda, N. Saito, N. Saito, and O. Takai, Corrosion Resistance and Chemical Stability of Super-Hydrophobic Film Deposited on Magnesium Alloy AZ31 by Microwave Plasma-Enhanced Chemical Vapor Deposition, Electrochim. Acta, 2010, 55, p 7094–7101CrossRefGoogle Scholar
  12. 12.
    H. Gao, Q. Li, Y. Dai, F. Luo, and H.X. Zhang, High Efficiency Corrosion Inhibitor 8-Hydroxyquinoline and Its Synergistic Effect with Sodium Dodecylbenzenesulphonate on AZ91D Magnesium Alloy, Corros. Sci., 2010, 52, p 1603–1609CrossRefGoogle Scholar
  13. 13.
    Q. Zong, L. Wang, W. Sun, and G. Liu, Active Deposition of bis (8-Hydroxyquinoline) Magnesium Coating for Enhanced Corrosion Resistance of AZ91D Alloy, Corros. Sci., 2014, 89, p 127–136CrossRefGoogle Scholar
  14. 14.
    S. Shen, Y. Zuo, and X. Zhao, The Effects of 8-Hydroxyquinoline on Corrosion Performance of a Mg-Rich Coating on AZ91D Magnesium Alloy, Corros. Sci., 2013, 76, p 275–283CrossRefGoogle Scholar
  15. 15.
    J. Hu, D. Zeng, Z. Zhang, T. Shi, G.L. Song, and X. Guo, 2-Hydroxy-4-Methoxy-Acetophenone as an Environment-Friendly Corrosion Inhibitor for AZ91D Magnesium Alloy, Corros. Sci., 2013, 74, p 35–43CrossRefGoogle Scholar
  16. 16.
    J. Hu, D. Huang, G.L. Song, and X. Guo, The Synergistic Inhibition Effect of Organic Silicate and Inorganic Zn Salt on Corrosion of Mg-10Gd-3Y Magnesium Alloy, Corros. Sci., 2011, 53, p 4093–4101CrossRefGoogle Scholar
  17. 17.
    L. Yang, Y. Li, B. Qian, and B. Hou, Polyaspartic Acid as a Corrosion Inhibitor for WE43 Magnesium Alloy, J. Mag. Alloys, 2015, 3, p 47–51CrossRefGoogle Scholar
  18. 18.
    M. Borrel and R.A. Paris, Precipitation Domains and Solubility Products of Some Oxinates and Methyloxinates, Anal. Chim. Acta, 1952, 6, p 389–399 (in French)CrossRefGoogle Scholar
  19. 19.
    S.H. Salleh, S. Thomas, J.A. Yuwono, K. Venkatesan, and N. Birbilis, Enhanced Hydrogen Evolution on Mg(OH)2 Covered Mg Surfaces, Electrochim. Acta, 2015, 161, p 144–152CrossRefGoogle Scholar
  20. 20.
    S.K. Panigrahi, W. Yuan, R.S. Mishra, R. Delorme, B. Davis, R.A. Howell, and K. Cho, A Study on the Combined Effect of Forging and Aging in Mg-Y-RE Alloy, Mater. Sci. Eng., A, 2011, 530, p 28–35CrossRefGoogle Scholar
  21. 21.
    R. Pinto, M.G.S. Ferreira, M.J. Carmezim, and M.F. Montemor, Passive Behavior of Magnesium Alloys (Mg-Zr) Containing Rare-Earth Elements in Alkaline Media, Electrochim. Acta, 2010, 55, p 2482–2489CrossRefGoogle Scholar
  22. 22.
    H. Ardelean, A. Seyeux, S. Zanna, F. Prima, I. Frateur, and P. Marcus, Corrosion Processes of Mg-Y-Nd-Zr Alloys in Na2SO4 Electrolyte, Corros. Sci., 2013, 73, p 196–207CrossRefGoogle Scholar
  23. 23.
    S.V. Lamaka, B. Vaghefinazari, D. Mei, R.P. Petrauskas, D. Hoche, and M.L. Zheludkevich, Comprehensive Screening of Mg Corrosion Inhibitors, Corros. Sci., 2017, 128, p 224–240CrossRefGoogle Scholar
  24. 24.
    A. Atrens and W. Dietzel, The Negative Difference Effect and Unipositive Mg+, Adv. Eng. Mater., 2007, 9, p 292–297CrossRefGoogle Scholar
  25. 25.
    S. Bender, J. Goellner, A. Heyn, and S. Schmigalla, A New Theory for the Negative Difference Effect in Magnesium Corrosion, Mater. Corros., 2012, 63, p 707–712Google Scholar
  26. 26.
    K.C. Tekin, U. Malayoglu, and S. Shrestha, Electrochemical Behavior of Plasma Electrolytic Oxide Coatings on Rare Earth Element Containing Mg Alloys, Surf. Coat. Technol., 2013, 236, p 540–549CrossRefGoogle Scholar
  27. 27.
    W. Jin, G. Wu, H. Feng, W. Wang, X. Zhang, and P.K. Chu, Improvement of Corrosion Resistance and Biocompatibility of Rare-Earth WE43 Magnesium Alloy by Neodymium Self-Ion Implantation, Corros. Sci., 2015, 94, p 142–155CrossRefGoogle Scholar
  28. 28.
    A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; A Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochim. Acta, 2014, 121, p 394–406CrossRefGoogle Scholar
  29. 29.
    V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, and N. Birbilis, Revisiting the Electrochemical impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy, ChemPhysChem, 2015, 16, p 536–539CrossRefGoogle Scholar
  30. 30.
    G.R. Argade, K. Kandasamy, S.K. Panigrahi, and R.S. Mishra, Corrosion Behavior of a Friction Stir Processed Rare-Earth Added Magnesium Alloy, Corros. Sci., 2012, 58, p 321–326CrossRefGoogle Scholar
  31. 31.
    S. Thomas, J. Izquierdo, N. Birbilis, and R.M. Souto, Possibilities and Limitations of Scanning Electrochemical Microscopy of Mg and Mg Alloys, Corrosion, 2014, 71, p 171–183CrossRefGoogle Scholar
  32. 32.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, Singapore, 2006CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • G. R. Argade
    • 1
    • 3
    Email author
  • S. Sanders
    • 2
    • 3
  • G. Mohandass
    • 2
    • 3
  • A. Alsaleh
    • 2
    • 3
  • F. D’Souza
    • 2
    • 3
  • T. D. Golden
    • 2
    • 3
  • R. S. Mishra
    • 1
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of ChemistryUniversity of North TexasDentonUSA
  3. 3.Advanced Materials and Manufacturing Processes InstituteUniversity of North TexasDentonUSA

Personalised recommendations