Processing of Ultrafine-Grained Steels by Warm Rolling and Annealing

  • Ankita Bhattacharya
  • Anish KarmakarEmail author
  • Arnab Karani
  • Mainak Ghosh
  • Debalay Chakrabarti


Low-carbon microalloyed steel was subjected to warm rolling followed by rapid transformation annealing (RTA) at 800-850 °C and subcritical annealing (SCA) at 600 °C to develop ultrafine ferrite grain structures (UFFG) with grain size less than 3 μm. The present study investigated the influence of light (40%) and heavy (80%) warm rolling deformation (LWR and HWR) applied during the finishing pass of two-pass rolling schedules on the microstructural evolution after rolling and subsequent annealing treatments. RTA treatment of HWR sample at a lower intercritical temperature for an optimum duration (800 °C, 30 s) developed UFFG-martensite dual-phase structure that offered the best combination of strength (YS ~ 900 MPa and UTS ~ 1200 MPa) and ductility (25% elongation). The SCA treatment provided sufficient time to achieve a uniform distribution of carbide particles throughout the ferrite matrix. SCA treatment of HWR at 600 °C for 4 h developed UFFG-carbide structure achieving YS of 800 MPa with 20% ductility. The SCA of LWR resulted in coarser ferrite grain structures (grain size > 5 μm) having higher ductility (more than 30%) but lower strength (UTS of 400-550 MPa) as compared to RTA.


ductility rapid transformation annealing strength subcritical annealing ultrafine ferrite grain size warm rolling deformation 



The authors acknowledge The Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, for providing the research facilities. Special mention to the facilities developed under Institute SGDRI-2015 Grant.


  1. 1.
    A. Karmakar, M. Mandal, A. Mandal, M. Basiruddin Sk, S. Mukherjee, and D. Chakrabarti, Effect of Starting Microstructure on the Grain Refinement in Cold-Rolled Low-Carbon Steel During Annealing at Two Different Heating Rates, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2016, 47(1), p 268–281CrossRefGoogle Scholar
  2. 2.
    K.-T. Park, Y.K. Lee, and D.H. Shin, Fabrication of Ultrafine Grained Ferrite/Martensite Dual Phase Steel by Severe Plastic Deformation, ISIJ Int., 2005, 45(5), p 750–755CrossRefGoogle Scholar
  3. 3.
    Y. Ivanisenko, W. Lojkowski, R.Z. Valiev, and H.J. Fecht, The Mechanism of Formation of Nanostructure and Dissolution of Cementite in a Pearlitic Steel During High Pressure Torsion, Acta Mater., 2003, 51(18), p 5555–5570CrossRefGoogle Scholar
  4. 4.
    A. Karmakar, R.D.K. Misra, S. Neogy, and D. Chakrabarti, Development of Ultrafine-Grained Dual-Phase Steels: Mechanism of Grain Refinement During Intercritical Deformation, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(9), p 4106–4118CrossRefGoogle Scholar
  5. 5.
    R. Song, D. Ponge, and D. Raabe, Improvement of the Work Hardening Rate of Ultrafine Grained Steels Through Second Phase Particles, Scr. Mater., 2005, 52(11), p 1075–1080CrossRefGoogle Scholar
  6. 6.
    A. Karmakar, S. Sivaprasad, S.K. Nath, R.D.K. Misra, and D. Chakrabarti, Comparison Between Different Processing Schedules for the Development of Ultrafine-Grained Dual-Phase Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2014, 45(5), p 2466–2479CrossRefGoogle Scholar
  7. 7.
    L. Lv, L. Fu, Y. Sun, and A. Shan, An Investigation on the Microstructure and Mechanical Properties in an Ultrafine Lamellar Martensitic Steel Processed by Heavy Warm Rolling and Tempering, Mater. Sci. Eng. A, 2018, 731, p 369–376CrossRefGoogle Scholar
  8. 8.
    L. Lv, L. Fu, S. Ahmad, and A. Shan, Effect of Heavy Warm Rolling on Microstructures and Mechanical Properties of AISI, 4140 Steel, Mater. Sci. Eng. A, 2017, 704, p 469–479CrossRefGoogle Scholar
  9. 9.
    L. Sanz, B. Pereda, and B. López, Effect of Thermomechanical Treatment and Coiling Temperature on the Strengthening Mechanisms of Low Carbon Steels Microalloyed with Nb, Mater. Sci. Eng. A, 2016, 685(November 2016), p 377–390Google Scholar
  10. 10.
    L. Cheng, Y. Chen, Q. Cai, W. Yu, G. Han, E. Dong, and X. Li, Precipitation Enhanced Ultragrain Refinement of Ti-Mo Microalloyed Ferritic Steel During Warm Rolling, Mater. Sci. Eng. A, 2017, 698(May), p 117–125CrossRefGoogle Scholar
  11. 11.
    G.K. Mandal, S.S. Das, T. Kumar, A. Kamaraj, K. Mondal, and V.C. Srivastava, Role of Precipitates in Recrystallization Mechanisms of Nb-Mo Microalloyed Steel, J. Mater. Eng. Perform., 2018, (Ref 15).Google Scholar
  12. 12.
    Y. Mehta, S.K. Rajput, G.P. Chaudhari, and V.V. Dabhade, Dynamic Recrystallization and Grain Refinement of Fe-P-C-Si and Fe-P-C-Si-N Steels, J. Mater. Eng. Perform., 2018, 27(9), p 4770–4782CrossRefGoogle Scholar
  13. 13.
    W. Shen, C. Zhang, L. Zhang, Q. Xu, and Y. Cui, Experimental Study on the Hot Deformation Characterization of Low-Carbon Nb-V-Ti Microalloyed Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4616–4624CrossRefGoogle Scholar
  14. 14.
    R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi, Ultragrain Refinement of Plain Low Carbon Steel by Cold-Rolling and Annealing of Martensite, Acta Mater., 2002, 50(16), p 4177–4189CrossRefGoogle Scholar
  15. 15.
    X. Zhao, T.F. Jing, Y.W. Gao, G.Y. Qiao, J.F. Zhou, and W. Wang, Annealing Behavior of Nano-Layered Steel Produced by Heavy Cold-Rolling of Lath Martensite, Mater. Sci. Eng. A, 2005, 397(1-2), p 117–121CrossRefGoogle Scholar
  16. 16.
    S.M. Hasan, A. Haldar, and D. Chakrabarti, Microstructure and Mechanical Property of Cold Rolled Low Carbon Steel After Prolonged Annealing Treatment, Mater. Sci. Technol., 2012, 28(7), p 823–828CrossRefGoogle Scholar
  17. 17.
    C. Lesch, P. Álvarez, W. Bleck, and J. Gil Sevillano, Rapid Transformation Annealing: A Novel Method for Grain Refinement of Cold-Rolled Low-Carbon Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, 38(9), p 1882–1890CrossRefGoogle Scholar
  18. 18.
    P. Álvarez, C. Lesch, W. Bleck, H. Petitgand, J. Schöttler, and J. Gil Sevillano, Grain Refinement by Rapid Transformation Annealing of Cold Rolled Low Carbon Steels, Mater. Sci. Forum, 2005, 500-501, p 771–778CrossRefGoogle Scholar
  19. 19.
    V. Andrade-Carozzo and P.J. Jacques, Interactions Between Recrystallisation and Phase Transformations During Annealing of Cold Rolled Nb-Added TRIP-Aided Steels, Mater. Sci. Forum, 2007, 539-543, p 4649–4654CrossRefGoogle Scholar
  20. 20.
    X. Wang, R. Ding, J. He, A. Zhao, and R. Liu, Ultrafine-Grained Multiphase Steels with Different Microstructural Constitutions Fabricated Through Annealing of Tempered and Deformed Martensite, Metall. Mater. Trans. A, 2018, 49(5), p 1439–1443Google Scholar
  21. 21.
    C. Prasad, P. Bhuyan, C. Kaithwas, R. Saha, and S. Mandal, Microstructure Engineering by Dispersing Nano-Spheroid Cementite in Ultrafine-Grained Ferrite and Its Implications on Strength-Ductility Relationship in High Carbon Steel, Mater. Des., 2018, 139, p 324–335CrossRefGoogle Scholar
  22. 22.
    C. Zheng and L. Li, Mechanical Behavior of Ultrafine-Grained Eutectoid Steel Containing Nano-Cementite Particles, Mater. Sci. Eng. A, 2018, 713, p 35–42CrossRefGoogle Scholar
  23. 23.
    V. Torganchuk, D.A. Molodov, A. Belyakov, and R. Kaibyshev, Microstructure and Mechanical Properties of an Ultrafine Grained Medium-Mn Steel, Defect Diffus. Forum, 2018, 385, p 308–313CrossRefGoogle Scholar
  24. 24.
    R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained Bcc Steels, Mater. Sci. Eng. A, 2006, 441(1-2), p 1–17CrossRefGoogle Scholar
  25. 25.
    T. Lolla, G. Cola, B. Narayanan, B. Alexandrov, and S.S. Babu, Development of Rapid Heating and Cooling (Flash Processing) Process to Produce Advanced High Strength Steel Microstructures, Mater. Sci. Technol., 2011, 27(5), p 863–875CrossRefGoogle Scholar
  26. 26.
    A. Karmakar, M. Ghosh, and D. Chakrabarti, Cold-Rolling and Inter-Critical Annealing of Low-Carbon Steel: Effect of Initial Microstructure and Heating-Rate, Mater. Sci. Eng. A, 2013, 564, p 389–399CrossRefGoogle Scholar
  27. 27.
    A. Chbihi, D. Barbier, L. Germain, A. Hazotte, and M. Gouné, Interactions Between Ferrite Recrystallization and Austenite Formation in High-Strength Steels, J. Mater. Sci., 2014, 49(10), p 3608–3621CrossRefGoogle Scholar
  28. 28.
    C. Zheng and D. Raabe, Interaction between Recrystallization and Phase Transformation During Intercritical Annealing in a Cold-Rolled Dual-Phase Steel: A Cellular Automaton Model, Acta Mater., 2013, 61(14), p 5504–5517CrossRefGoogle Scholar
  29. 29.
    J. Han and Y.-K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354–361CrossRefGoogle Scholar
  30. 30.
    N. Tsuji, R. Ueji, and Y. Saito, A Novel Process to Obtain Nanostructured Low-Carbon Bulky Steel with High Strength, Procedeeing of the 22nd RISO International Symposium on Materials Science, RISO National Laboratory, Denmark, 2001, p 407–415Google Scholar
  31. 31.
    N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, A New and Simple Process to Obtain Nano-Structured Bulk Low-Carbon Steel with Superior Mechanical Property, Scr. Mater., 2002, 46(4), p 305–310CrossRefGoogle Scholar
  32. 32.
    K. Hase and N. Tsuji, Effect of Initial Microstructure on Ultrafine Grain Formation Through Warm Deformation in Medium-Carbon Steels, Scr. Mater., 2011, 65(5), p 404–407CrossRefGoogle Scholar
  33. 33.
    A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti, Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(5), p 2041–2052CrossRefGoogle Scholar
  34. 34.
    I.B. Timokhina, A.I. Nosenkov, A.O. Humphreys, J.J. Jonas, and E.V. Pereloma, Effect of Alloying Elements on the Microstructure and Texture of Warm Rolled Steels, ISIJ Int., 2004, 44(4), p 717–724CrossRefGoogle Scholar
  35. 35.
    D.L. Bourell and O.D. Sherby, Ductility Improvement of a Low-Carbon Steel By Warm Rolling and Annealing, Metall. Trans. A Phys. Metall. Mater. Sci., 1981, 12 A(1), p 140–142CrossRefGoogle Scholar
  36. 36.
    M. Calcagnotto, D. Ponge, and D. Raabe, Ultrafine Grained Ferrite/Martensite Dual Phase Steel Fabricated by Large Strain Warm Deformation and Subsequent Intercritical Annealing, ISIJ Int., 2008, 48(8), p 1096–1101CrossRefGoogle Scholar
  37. 37.
    M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527(29–30), p 7832–7840CrossRefGoogle Scholar
  38. 38.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and Fracture Mechanisms in Fine- and Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, 59(2), p 658–670CrossRefGoogle Scholar
  39. 39.
    J. Huang, W.J. Poole, and M. Militzer, Austenite Formation During Intercritical Annealing, Metall. Mater. Trans. A, 2004, 35(11), p 3363–3375CrossRefGoogle Scholar
  40. 40.
    K. Mukherjee, S.S. Hazra, and M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2009, 40(9), p 2145–2159CrossRefGoogle Scholar
  41. 41.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Formation of Ultrafine Grained Dual Phase Steels through Rapid Heating, ISIJ Int., 2011, 51(6), p 958–964CrossRefGoogle Scholar
  42. 42.
    ASTM E8/E8M - 16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, 2016Google Scholar
  43. 43.
    N. Tsuji, R. Ueji, and Y. Minamino, Nanoscale Crystallographic Analysis of Ultrafine Grained IF Steel Fabricated by ARB Process, Scr. Mater., 2002, 47(2), p 69–76CrossRefGoogle Scholar
  44. 44.
    L. Storojeva, D. Ponge, R. Kaspar, and D. Raabe, Development of Microstructure and Texture of Medium Carbon Steel During Heavy Warm Deformation, Acta Mater., 2004, 52(8), p 2209–2220CrossRefGoogle Scholar
  45. 45.
    R. Song, D. Ponge, D. Raabe, and R. Kaspar, Microstructure and Crystallographic Texture of an Ultrafine Grained C-Mn Steel and Their Evolution During Warm Deformation and Annealing, Acta Mater., 2005, 53(3), p 845–858CrossRefGoogle Scholar
  46. 46.
    R.R. Mohanty, O.A. Girina, and N.M. Fonstein, Effect of Heating Rate on the Austenite Formation in Low-Carbon High-Strength Steels Annealed in the Intercritical Region, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(12), p 3680–3690CrossRefGoogle Scholar
  47. 47.
    C.I. Garcia and A.J. DeArdo, Formation of Austenite in 1.5 Pct Mn Steels, Metall. Trans. A, 1981, 12(3), p 521–530CrossRefGoogle Scholar
  48. 48.
    D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall. Trans. A, 1985, 16(8), p 1385–1392CrossRefGoogle Scholar
  49. 49.
    N. Peranio, Y.J. Li, F. Roters, and D. Raabe, Microstructure and Texture Evolution in Dual-Phase Steels: Competition Between Recovery, Recrystallization, and Phase Transformation, Mater. Sci. Eng. A, 2010, 527(16–17), p 4161–4168CrossRefGoogle Scholar
  50. 50.
    V. Massardier, A. Ngansop, D. Fabrègue, and J. Merlin, Identification of the Parameters Controlling the Grain Refinement of Ultra-Rapidly Annealed Low Carbon Al-Killed Steels, Mater. Sci. Eng. A, 2010, 527(21–22), p 5654–5663CrossRefGoogle Scholar
  51. 51.
    R.A. Oriani, Ostwald Ripening of Precipitates in Solid Matrices, Acta Metall., 1964, 12(12), p 1399–1409CrossRefGoogle Scholar
  52. 52.
    S.S. Sahay, A.M. Kumar, and A. Chatterjee, Development of Integrated Model for Batch Annealing of Cold Rolled Steels, Ironmak. Steelmak., 2004, 31(2), p 144–152CrossRefGoogle Scholar
  53. 53.
    T.R. Malow and C.C. Koch, Grain Growth in Nanocrystalline Iron Prepared by Mechanical Attrition, Acta Mater., 1997, 45(5), p 2177–2186CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, I.I.T. KharagpurKharagpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of Technology, N.I.T., WarangalWarangalIndia
  3. 3.Materials Characterization Group, Research and DevelopmentTATA SteelJamshedpurIndia
  4. 4.Council of Scientific and Industrial Research, National Metallurgical LaboratoryCSIR-NMLJamshedpurIndia

Personalised recommendations