Advertisement

Preparation and Oxidation Performance of a NiCoCrAlYSiHf + NiAl Composite Coating Deposited by Arc Ion Plating and Magnetron Sputtering Techniques

  • Hongrui Yao
  • Chengyang Jiang
  • Zebin BaoEmail author
  • Shenglong Zhu
  • Fuhui Wang
Article
  • 13 Downloads

Abstract

A NiCoCrAlYSiHf+NiAl composite coating was deposited onto a second-generation single-crystal superalloy René N5 by methods of arc ion plating and magnetron sputtering. After vacuum annealing, the composite coating exhibited a gradient distribution of elements, in which Al was enriched in outer layer and Cr was enriched in inner layer. Compared with conventional NiCoCrAlYSiHf and β-NiAl coatings, the composite coating was evaluated in isothermal and cyclic oxidation tests at 1100 °C in ambient air. The results showed that the oxidation rate of the composite coating was lower than that of NiCoCrAlYSiHf coating. Meanwhile, the extent of interdiffusion between coating and substrate in the composite coating was slighter compared with that in the β-NiAl coating. Microstructure evolutions of the composite coating after annealing and further oxidation test are investigated.

Keywords

NiAl NiCoCrAlYSiHf oxidation, interdiffusion, microstructure 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51301184 and 51671202), and the Defense Industrial Technology Development Program (Grant No. JCKY2016404C001). This project was also sponsored by the “Liaoning BaiQianWan Talents” Program.

References

  1. 1.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280–284CrossRefGoogle Scholar
  2. 2.
    T.N. Rhys-Jones, Coatings for Blade and Vane Applications in Gas Turbines, Corros. Sci., 1989, 29, p 623–646CrossRefGoogle Scholar
  3. 3.
    W. Brandl, H.J. Grabke, D. Toma, and J. Kruger, The Oxidation Behaviour of Sprayed MCrAIY Coatings, Surf. Coat. Technol., 1996, 86–87, p 41–47CrossRefGoogle Scholar
  4. 4.
    C. Leyens, K. Fritscher, R. Gehrling, M. Peters, and W.A. Kaysser, Oxide Scale Formation on an MCrAlY Coating in Various H2-H2O Atmospheres, Surf. Coat. Technol., 1996, 82, p 133–144CrossRefGoogle Scholar
  5. 5.
    D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on MCrAlY Type Bondcoats Associated with the Formation of the Thermally Grown Oxide, J. Mater. Sci., 2009, 44, p 1687–1703CrossRefGoogle Scholar
  6. 6.
    Y.J. Li, Y.T. Xie, L.P. Huang, X.Y. Liu, and X.B. Zheng, Effect of Physical Vapor Deposited Al2O3 Film on TGO Growth in YSZ/CoNiCrAlY Coatings, Ceram. Int., 2012, 38, p 5113–5121CrossRefGoogle Scholar
  7. 7.
    D. Renusch, M. Schorr, and M. Schutze, The Role that Bond Coat Depletion of Aluminum has on the Lifetime of APS-TBC Under Oxidizing Conditions, Mater. Corros., 2008, 59, p 547–555CrossRefGoogle Scholar
  8. 8.
    P. Niranatlumpong, C.B. Ponton, and H.E. Evans, The Failure of Protective Oxides on Plasma-Sprayed NiCrAlY Overlay Coatings, Oxid. Met., 2000, 53, p 241–258CrossRefGoogle Scholar
  9. 9.
    M.L. Shen, P.P. Zhao, Y. Gu, S.L. Zhu, and F.H. Wang, High Vacuum Arc Ion Plating NiCrAlY Coatings: Microstructure and Oxidation Behavior, Corros. Sci., 2015, 94, p 294–304CrossRefGoogle Scholar
  10. 10.
    Y.N. Wu, M. Qin, Z.C. Feng, Y. Liang, C. Sun, and F.H. Wang, Improved Oxidation Resistance of NiCrAlY Coatings, Mater. Lett., 2003, 57, p 2404–2408CrossRefGoogle Scholar
  11. 11.
    Y.N. Wu, Q.M. Wang, P.L. Ke, C. Sun, J. Gong, F.H. Wang, and L.S. Wen, Evaluation of arc ion plated NiCoCrAlYSiB Coatings after Oxidation at 900–1000 °C, Surf. Coat. Technol., 2006, 200, p 2857–2863CrossRefGoogle Scholar
  12. 12.
    K.A. Unocic and B.A. Pint, Characterization of the Alumina Scale Formed on a Commercial MCrAlYHfSi Coating, Surf. Coat. Technol., 2010, 205, p 1178–1182CrossRefGoogle Scholar
  13. 13.
    J. Haynes, K. Unocic, and B. Pint, Effect of Water Vapor on the 1100 °C Oxidation Behavior of Plasma-Sprayed TBCs with HVOF NiCoCrAlX Bond Coatings, Surf. Coat. Technol., 2013, 215, p 39–45CrossRefGoogle Scholar
  14. 14.
    H.W. Grunling and R. Bauer, The Role of Silicon in Corrosion-Resistant High Temperature Coatings, Thin Solid Films, 1982, 95, p 3–20CrossRefGoogle Scholar
  15. 15.
    Q.M. Wang, Y.N. Wu, P.L. Ke, H.T. Cao, J. Gong, C. Sun, and L.S. Wen, Hot Corrosion Behavior of AIP NiCoCrAlY(SiB) Coatings on Nickel Base Superalloys, Surf. Coat. Technol., 2004, 186, p 389–397CrossRefGoogle Scholar
  16. 16.
    N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-temperature Oxidation of Metals, 2nd ed., Cambridge University Press, 2006, pp. 111–115.Google Scholar
  17. 17.
    S. Suresh, Graded Materials for Resistance to Contact Deformation and Damage, Science, 2001, 292, p 2447–2451CrossRefGoogle Scholar
  18. 18.
    X. Ren and F. Wang, High-Temperature Oxidation and Hot-Corrosion Behavior of a Sputtered NiCrAlY Coating with and Without Aluminizing, Surf. Coat. Technol., 2006, 201, p 30–37CrossRefGoogle Scholar
  19. 19.
    M.H. Guo, Q.M. Wang, J. Gong, C. Sun, and L.S. Wen, Preparation and Oxidation of a Gradient NiCoCrAlYSiB Coating Deposited by a Combined System of Arc Ion Plating and Magnetron Sputtering, Surf. Coat. Technol., 2006, 201, p 1302–1308CrossRefGoogle Scholar
  20. 20.
    M.H. Guo, Q.M. Wang, J. Gong, C. Sun, R.F. Huang, and L.S. Wen, Oxidation and Hot Corrosion Behavior of Gradient NiCoCrAlYSiB Coatings Deposited by a Combination of Arc Ion Plating and Magnetron Sputtering techniques, Corros. Sci., 2006, 48, p 2750–2764CrossRefGoogle Scholar
  21. 21.
    J.R. Nicholls, N.J. Simms, W.Y. Chan, and H.E. Evans, Smart Overlay Coatings—Concept and Practice, Surf. Coat. Technol., 2002, 149, p 236–244CrossRefGoogle Scholar
  22. 22.
    S.J. Hou, S.L. Zhu, T. Zhang, and F.H. Wang, A Magnetron Sputtered Microcrystalline β-NiAl Coating for SC Superalloys. Part I. Characterization and Comparison of Isothermal Oxidation Behavior at 1100 °C with a NiCrAlY Coating, Appl. Surf. Sci., 2015, 324, p 1–12CrossRefGoogle Scholar
  23. 23.
    J.J. Liang, H. Wei, G.C. Hou, Q. Zheng, X.F. Sun, H.R. Guan, and Z.Q. Hu, Thermal Stability of Phases in a NiCoCrAlY Coating Alloy, J. Mater. Res., 2008, 23, p 2264–2274CrossRefGoogle Scholar
  24. 24.
    B. Grushko, W. Kowalski, D. Pavlyuchkov, B. Przepiórzyński, and M. Surowiec, A Contribution to the Al-Ni-Cr Phase Diagram, J. Alloy. Compd., 2008, 460, p 299–304CrossRefGoogle Scholar
  25. 25.
    C.C. Jia, K. Ishida, and T. Nishizawa, Partition of Alloying Elements Between γ (A1), γ′ (L12), and β (B2) Phases in Ni-Al Base Systems, Metall. Trans. A, 1994, 25, p 473–485CrossRefGoogle Scholar
  26. 26.
    C.E. Campbell, W.J. Boettinger, and U.R. Kattner, Development of a Diffusion Mobility Database for Ni-base Superalloys, Acta Mater., 2002, 50, p 775–792CrossRefGoogle Scholar
  27. 27.
    S. Wollmer, S. Zaefferer, M. Goken, T. Mack, and U. Glatzel, Characterization of Phases of Aluminized Nickel Base Superalloys, Surf. Coat. Technol., 2003, 167, p 83–96CrossRefGoogle Scholar
  28. 28.
    B. Ning and M.L. Weaver, A Preliminary Study of DC Magnetron Sputtered NiAl–Hf Coatings, Surf. Coat. Technol., 2004, 177–178, p 113–120CrossRefGoogle Scholar
  29. 29.
    N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High-temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006, p 69–73CrossRefGoogle Scholar
  30. 30.
    Y.F. Yang, C.Y. Jiang, H.R. Yao, Z.B. Bao, S.L. Zhu, and F.H. Wang, Cyclic Oxidation and Rumpling Behaviour of Single Phase β-(Ni, Pt)Al Coatings with Different Thickness of Initial Pt Plating, Corros. Sci., 2016, 111, p 162–174CrossRefGoogle Scholar
  31. 31.
    H.R. Yao, Z.B. Bao, M.L. Shen, S.L. Zhu, and F.H. Wang, A Magnetron Sputtered Microcrystalline β-NiAl Coating for SC Superalloys. Part II. Effects of a NiCrO Diffusion Barrier on Oxidation Behavior at 1100 °C, Appl. Surf. Sci., 2017, 407, p 485–494CrossRefGoogle Scholar
  32. 32.
    J.D. Nystrom, T.M. Pollock, W.H. Murphy, and A. Garg, Discontinuous Cellular Precipitation in a High Refractory Nickel Base Superalloy, Metall. Mater. Trans. A, 1997, 28, p 2443–2452CrossRefGoogle Scholar
  33. 33.
    N. Czech, F. Schmitz, and W. Stamm, Microstructural Analysis of the Role of Rhenium in Advanced MCrAlY Coatings, Surf. Coat. Technol., 1995, 76–77, p 28–33CrossRefGoogle Scholar
  34. 34.
    W. Beele, N. Czech, W.J. Quadakkers, and W. Stamm, Long-Term Oxidation Tests on a Re-Containing MCrAlY Coatings, Surf. Coat. Technol., 1997, 94–95, p 41–45CrossRefGoogle Scholar
  35. 35.
    O. Knotek, F. Löffler, and W. Beele, Diffusion Barrier Design Against Rapid Interdiffusion of MCrAlY and Ni-base Material, Surf. Coat. Technol., 1993, 61, p 6–13CrossRefGoogle Scholar
  36. 36.
    L. Tianquan, G. Hongbo, P. Hui, and G. Shengkai, Precipitation Phases in the Nickel-Based Superalloy DZ 125 with YSZ/CoCrAlY Thermal Barrier Coating, J. Alloys Comp., 2011, 509, p 8542–8548CrossRefGoogle Scholar
  37. 37.
    Y.X. Cheng, W. Wang, S.L. Zhu, L. Xin, and F.H. Wang, Arc Ion Plated-Cr2O3 Intermediate Film as a Diffusion Barrier Between NiCrAlY and γ-TiAl, Intermetallics, 2010, 18, p 736–739CrossRefGoogle Scholar
  38. 38.
    C.A. Guo, W. Wang, Y. Cheng, S.L. Zhu, and F.H. Wang, Yttria Partially Stabilised zirConia as Diffusion Barrier Between NiCrAlY and Ni-Base Single Crystal René N5 Superalloy, Corros. Sci., 2015, 94, p 122–128CrossRefGoogle Scholar
  39. 39.
    M.S.A. Karunaratne, C.M.F. Rae, and R.C. Reed, On the Microstructural Instability of an Experimental Nickel-Based Single-Crystal Superalloy, Metall. Mater. Trans., 2001, 32, p 2409–2421CrossRefGoogle Scholar
  40. 40.
    Lavigne, C. Ramusat, S. Drawin, P. Caron, D. Boivin, J.L. Pouchou, Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys, in 10th International Symposium on Superalloys, Champion, PA USA, SEP 19–23, 2004.Google Scholar
  41. 41.
    A. Sato, Y. Aoki, M. Arai, and H. Harada, Effect of Aluminizing Coating on Creep Properties of Ni-base Single Crystal Superalloys, J. Japan Inst. Metals, 2007, 71, p 320–325CrossRefGoogle Scholar
  42. 42.
    Y. Matsuoka, Y. Aoki, K. Matsumoto, A. Satou, T. Suzuki, K. Chikugo, K. Murakami, The Formation of SRZ on a Fourth Generation Single Crystal Superalloy Applied with Aluminide Coating, in 10th International Symposium on Superalloys, Champion, PA USA, SEP 19–23, 2004.Google Scholar
  43. 43.
    C.M.F. Rae, M.S. Hook, and R.C. Reed, The Effect of TCP Morphology on the Development of Aluminide Coated Superalloys, Mater. Sci. Eng. A, 2005, 396, p 231–239CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Hongrui Yao
    • 1
    • 2
  • Chengyang Jiang
    • 1
    • 3
  • Zebin Bao
    • 1
    Email author
  • Shenglong Zhu
    • 1
  • Fuhui Wang
    • 3
  1. 1.Corrosion and Protection Division, Shenyang National Laboratory for Materials ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Corrosion and Protection Division, Shenyang National Laboratory for Materials ScienceNortheastern UniversityShenyangChina

Personalised recommendations