Advertisement

Effect of Friction Stir Processing on the Microstructure, Damping Capacity, and Mechanical Properties of Al-Si Alloy

  • H. J. Jiang
  • C. Y. LiuEmail author
  • Z. X. Yang
  • Y. P. Li
  • H. F. Huang
  • F. C. Qin
Article
  • 20 Downloads

Abstract

Friction stir processing (FSP) was conducted on an Al-Si casting alloy. The Si phase and Al grains of an Al-Si casting alloy were refined through FSP. Furthermore, FSP with high rotation rate led to the precipitation of Mg and Si atoms and the formation of Mg2Si phase in the Al-Si alloy. Precipitation improved the low-strain damping capacity but deteriorates high-strain damping capacity of the FSP sample at room temperature. At low rotation rate, the FSP sample exhibited excellent high-temperature damping capacity mainly because of its fine grain structure and the low density of its pinning points. The plastic instability of the Al-Si alloy was eliminated by FSP because of the refinement of the Si phase. The increase in the strength of each FSP sample was attributed to the increase in second-phase and boundary strengthening effects. Thus, the mechanical properties and damping capacity of Al-Si were enhanced after FSP.

Keywords

Al alloy capacity damping mechanical properties microstructure 

Notes

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 51601045), Guangxi “Bagui” Teams for Innovation and Research, the Guangxi Natural Science Foundation (No. 2016GXNSFDA380028), and the Guangxi Science and Technology Major Project (No. GKAA17202007).

References

  1. 1.
    S.H. Chang, Influence of Chemical Composition on the Damping Characteristics of Cu-Al-Ni Shape Memory Alloys, Mater. Chem. Phys., 2011, 125, p 358–363CrossRefGoogle Scholar
  2. 2.
    H.J. Jiang, C.Y. Liu, Y. Chen, Z.X. Yang, H.F. Huang, L.L. Wei, Y.B. Li, and H.Q. Qi, Evaluation of Microstructure, Damping Capacity and Mechanical Properties of Al-35Zn and Al-35Zn-0.5Sc Alloys, J. Alloys Compd., 2018, 739, p 114–121CrossRefGoogle Scholar
  3. 3.
    H.J. Jiang, C.Y. Liu, Z.Y. Ma, X. Zhang, L. Yu, M.Z. Ma, and R.P. Liu, Fabrication of Al-35Zn Alloys with Excellent Damping Capacity and Mechanical Properties, J. Alloys Compd., 2017, 722, p 138–144CrossRefGoogle Scholar
  4. 4.
    T. Hosch and R.E. Napolitano, The Effect of the Flake to Fiber Transition in Silicon Morphology on the Tensile Properties of Al-Si Eutectic Alloys, Mater. Sci. Eng. A, 2010, 528, p 226–232CrossRefGoogle Scholar
  5. 5.
    Z. Wang, Y.G. Tong, and Y.P. Wang, Promoting Effect of Silicon Particles on Gas-Diffusion-Reaction System: In-Situ Synthesis of AlN in Al-Si Materials, J. Alloys Compd., 2018, 735, p 13–22CrossRefGoogle Scholar
  6. 6.
    Z.Y. Wang, H. Wang, M. Yang, W.W. Sun, G.F. Yin, Q.Y. Zhang, and Z.F. Ren, Thermal Reliability of Al-Si Eutectic Alloy for Thermal Energy Storage, Mater. Res. Bull., 2017, 95, p 300–306CrossRefGoogle Scholar
  7. 7.
    Y.J. Zhang, N.H. Ma, H.W. Wang, and X.F. Li, Study on Damping Behavior of A356 Alloy After Grain Refinement, Mater. Des., 2008, 29, p 706–708CrossRefGoogle Scholar
  8. 8.
    C.Y. Liu, H.J. Jiang, B. Zhang, and Z.Y. Ma, High Damping Capacity of Al Alloys Produced by Friction Stir Processing, Mater. Charact., 2018, 136, p 382–387CrossRefGoogle Scholar
  9. 9.
    H.J. Jiang, C.Y. Liu, B. Zhang, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, and R.P. Liu, Simultaneously Improving Mechanical Properties and Damping Capacity of Al-Mg-Si Alloy Through Friction Stir Processing, Mater. Charact., 2017, 131, p 425–430CrossRefGoogle Scholar
  10. 10.
    Y.F. Mo, C.Y. Liu, G.B. Teng, H.J. Jiang, Y. Chen, Z.X. Yang, Y. Chen, and S.C. Han, Fabrication of 7075-0.25Sc-0.15Zr Alloy with Excellent Damping and Mechanical Properties by FSP and T6 Treatment, J. Mater. Eng. Perform., 2018, 27, p 4162–4167CrossRefGoogle Scholar
  11. 11.
    Y. Chen, C.Y. Liu, B. Zhang, Z.Y. Ma, W.B. Zhou, H.J. Jiang, H.F. Huang, and L.L. Wei, Effects of Friction Stir Processing and Minor Sc Addition on the Microstructure, Mechanical Properties, and Damping Capacity of 7055 Al Alloy, Mater. Charact., 2018, 135, p 25–31CrossRefGoogle Scholar
  12. 12.
    A. Granto and K. Lücke, Theory of Mechanical Damping due to Dislocation, J. Appl. Phys., 1956, 27, p 583–593CrossRefGoogle Scholar
  13. 13.
    C.D. Lee, Damping Properties on Age Hardening of Al-7Si-0.3Mg Alloy During T6 Treatment, Mater. Sci. Eng. A, 2005, 394, p 112–116CrossRefGoogle Scholar
  14. 14.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRefGoogle Scholar
  15. 15.
    Q. Zhang, B.L. Xiao, P. Xue, and Z.Y. Ma, Microstructural Evolution and Mechanical Properties of Ultrafine Grained Al3Ti/Al-5.5Cu Composites Produced via Hot Pressing and Subsequent Friction Stir Processing, Mater. Chem. Phys., 2012, 134, p 294–301CrossRefGoogle Scholar
  16. 16.
    C.Y. Liu, B. Zhang, Z.Y. Ma, G.B. Teng, L.L. Wei, W.B. Zhou, and X.Y. Zhang, Effects of Pre-aging and Minor Sc Addition on the Microstructure and Mechanical Properties of Friction Stir Processed 7055 Al Alloy, Vacuum, 2018, 149, p 106–113CrossRefGoogle Scholar
  17. 17.
    I. Charita and R.S. Mishra, Effect of Friction Stir Processed Microstructure on Tensile Properties of an Al-Zn-Mg-Sc Alloy Upon Subsequent Aging Heat Treatment, J. Mater. Sci. Technol., 2018, 34, p 214–218CrossRefGoogle Scholar
  18. 18.
    S.Q. Chen, X.P. Dong, R. Ma, L. Zhang, H. Wang, and Z.T. Fan, Effects of Cu on Microstructure, Mechanical Properties and Damping Capacity of High Damping Mg-1%Mn Based Alloy, Mater. Sci. Eng. A, 2012, 551, p 87–94CrossRefGoogle Scholar
  19. 19.
    F.C. Liu, Z.Y. Ma, and F.C. Zhang, High Strain Rate Superplasticity in a Micro-Grained Al-Mg-Sc Alloy with Predominant High Angle Grain Boundaries, J. Mater. Sci. Technol., 2012, 28, p 1025–1030CrossRefGoogle Scholar
  20. 20.
    F.C. Liu, Z.Y. Ma, and L.Q. Chen, Low-Temperature Superplasticity of Al-Mg-Sc Alloy Produced by Friction Stir Processing, Scr. Mater., 2009, 60, p 968–971CrossRefGoogle Scholar
  21. 21.
    I. Charit and R.S. Mishra, Low Temperature Superplasticity in a Friction-Stir-Processed Ultrafine Grained Al-Zn-Mg-Sc Alloy, Acta Mater., 2005, 53, p 4211–4223CrossRefGoogle Scholar
  22. 22.
    Y. Lei, W.H. Ma, J.J. Wu, K.X. Wei, S.Y. Li, and K. Morita, Impurity Phases and Their Removal in Si Purification with Al-Si Alloy Using Transition Metals as Additives, J. Alloys Compd., 2018, 734, p 250–257CrossRefGoogle Scholar
  23. 23.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Effect of Multiple-Pass Friction Stir Processing on Microstructure and Tensile Properties of a Cast Aluminum-Silicon Alloy, Scr. Mater., 2006, 54, p 1623–1626CrossRefGoogle Scholar
  24. 24.
    Z.Y. Ma, Friction Stir Processing Technology: A Review, Metall. Mater. Trans. A, 2008, 39, p 642–658CrossRefGoogle Scholar
  25. 25.
    Z.Y. Ma, R.S. Mishra, and M.W. Mahoney, Superplasticity in Cast A356 Induced via Friction Stir Processing, Scr. Mater., 2004, 50, p 931–935CrossRefGoogle Scholar
  26. 26.
    C.Y. Liu, B. Qu, P. Xue, Z.Y. Ma, K. Luo, M.Z. Ma, and R.P. Liu, Fabrication of Large-bulk Ultrafine Grained 6061 Aluminum Alloy by Rolling and Low-Heat-Input Friction Stir Welding, J. Mater. Sci. Technol., 2018, 34, p 112–118CrossRefGoogle Scholar
  27. 27.
    M. Alizadeh, M.H. Paydar, D. Terada, and N. Tsuji, Effect of SiC Particles on the Microstructure Evolution and Mechanical Properties of Aluminum During ARB Process, Mater. Sci. Eng. A, 2012, 540, p 13–23CrossRefGoogle Scholar
  28. 28.
    T.S. Kê, Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals, Phys. Rev., 1947, 71, p 533–546CrossRefGoogle Scholar
  29. 29.
    B. Cai, Q.P. Kong, P. Cui, H.T. Cong, and X.K. Sun, Internal Friction of Nanocrystalline Aluminum Prepared by Plasma Evaporation and Compaction, Scr. Mater., 2001, 44, p 1043–1048CrossRefGoogle Scholar
  30. 30.
    Q.P. Kong, W.B. Jiang, Y. Shi, P. Cui, Q.F. Fang, and M. Winning, Grain Boundary Internal Friction in Bicrystals with Different Misorientations, Mater. Sci. Eng. A, 2009, 521–522, p 128–133CrossRefGoogle Scholar
  31. 31.
    Z.Q. Yang, J. Chen, L.L. He, H.T. Cong, and H.Q. Ye, Microstructure and Grain Boundary Relaxation in Ultrafine-Grained Al/Al Oxide Composites, Acta Mater., 2009, 57, p 3633–3644CrossRefGoogle Scholar
  32. 32.
    I.S. Golovin, A.S. Bychkov, A.V. Mikhailovskaya, and S.V. Dobatkin, Contributions of Phase and Structural Transformations in Multicomponent Al-Mg Alloys to the Linear and Nonlinear Mechanisms of Anelasticity, Phys. Metals Metall., 2014, 115, p 192–201CrossRefGoogle Scholar
  33. 33.
    I.S. Golovin, A.V. Mikhaylovskaya, and H.-R. Sinning, Role of the β-Phase in Grain Boundary and Dislocation Anelasticity in Binary Al-Mg Alloys, J. Alloys Compd., 2013, 577, p 622–632CrossRefGoogle Scholar
  34. 34.
    B.H. Luo, Z.H. Bai, and Y.Q. Xie, The Effects of Trace Sc and Zr on Microstructure and Internal Friction of Zn-Al Eutectoid Alloy, Mater. Sci. Eng. A, 2004, 370, p 172–176CrossRefGoogle Scholar
  35. 35.
    H. Watanabe, T. Mukai, M. Sugioka, and K. Ishikawa, Elastic and Damping Properties from Room Temperature to 673 K in an AZ31 Magnesium Alloy, Scr. Mater., 2004, 51, p 291–295CrossRefGoogle Scholar
  36. 36.
    J. Zhang, R.J. Perez, and E.J. Lavernia, Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials, J. Mater. Sci., 1993, 28, p 2395–2404CrossRefGoogle Scholar
  37. 37.
    M. Yamaguchi, J. Bernhardt, K. Faerstein, D. Shtansky, Y. Bando, I.S. Golovin, H.R. Sinning, and D. Golberg, Fabrication and Characteristics of Melt-Spun Al Ribbons Reinforced with Nano/micro-BN Phases, Acta Mater., 2013, 61, p 7604–7615CrossRefGoogle Scholar
  38. 38.
    A.V. Mikhaylovskaya, V.K. Portnoy, A.G. Mochugovskiy, MYu Zadorozhnyy, NYu Tabachkova, and I.S. Golovin, Effect of Homogenisation Treatment on Precipitation, Recrystallisation and Properties of Al-3% Mg-TM Alloys (TM=Mn, Cr, Zr), Mater. Des., 2016, 109, p 197–208CrossRefGoogle Scholar
  39. 39.
    D.F. Li, C.X. Cui, X. Wang, Q.Z. Wang, C. Chen, and S.Q. Liu, Microstructure Evolution and Enhanced Mechanical Properties of Eutectic Al-Si Die Cast Alloy by Combined Alloying Mg and La, Mater. Des., 2016, 90, p 820–828CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • H. J. Jiang
    • 1
  • C. Y. Liu
    • 1
    Email author
  • Z. X. Yang
    • 1
  • Y. P. Li
    • 1
  • H. F. Huang
    • 1
  • F. C. Qin
    • 1
  1. 1.Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Ministry of EducationGuilin University of TechnologyGuilinChina

Personalised recommendations