Advertisement

Enhanced Surface Properties and Microstructure Evolution of Cr12MoV Using Ultrasonic Surface Rolling Process Combined with Deep Cryogenic Treatment

  • Shuai RenEmail author
  • Yunfei Zhang
  • Yingli Zhao
  • Zhiguo An
  • Feng Xue
  • Jitan Yao
  • Zhiyan Sun
  • Jinbao Chang
Article
  • 10 Downloads

Abstract

In this study, the enhanced surface properties and microstructure evolution of quenched and tempered cold work die steel Cr12MoV, which were induced by ultrasonic surface rolling process combined with deep cryogenic treatment (UDCT), were systematically investigated. The results indicated that UDCT had an advantage over conventional ultrasonic surface rolling process (USRP) in improving surface mechanical properties, including smaller surface roughness and smoother machined surface with less cracks and defects; higher surface microindentation hardness with the value of ~ 890 HV (increased by ~ 6.2% compared with USRP); and lower friction coefficient. Such enhancements in surface properties are mainly attributed to the martensitic transformation of retained austenite, the dispersion strengthening of small secondary carbides and the homogenized carbides distribution during UDCT.

Keywords

nano-processing rolling steel ultra-high strength 

References

  1. 1.
    Z.B. Wang, N.R. Tao, S. Li, W. Wang, G. Liu, J. Lu, and K. Lu, Effect of Surface Nanocrystallization on Friction and Wear Properties in Low Carbon Steel, Mater. Sci. Eng., A, 2003, 352(1–2), p 144–149CrossRefGoogle Scholar
  2. 2.
    L.L. Shaw, Enhanced Fatigue Resistance of a Nickel-Based Hastelloy Induced by a Surface Nanocrystallization and Hardening Process, Philos. Mag. Lett., 2005, 85(8), p 427–438CrossRefGoogle Scholar
  3. 3.
    G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the Different Frequencies and Loads of Ultrasonic Surface Rolling on Surface Mechanical Properties and Fretting Wear Resistance of HIP Ti-6Al-4V alloy, Appl. Surf. Sci., 2016, 389, p 324–334CrossRefGoogle Scholar
  4. 4.
    X.J. Cao, Y.S. Pyoun, and R. Murakami, Fatigue Properties of a S45C Steel Subjected to Ultrasonic Nanocrystal Surface Modification, Appl. Surf. Sci., 2010, 256(21), p 6297–6303CrossRefGoogle Scholar
  5. 5.
    A. Amanov, I.S. Cho, and Y.S. Pyun, Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification Technique, Appl. Surf. Sci., 2016, 388, p 185–195CrossRefGoogle Scholar
  6. 6.
    A. Amanov, J.H. Kim, Y.S. Pyun, T. Hirayama, and M. Hino, Wear Mechanisms of Silicon Carbide Subjected to Ultrasonic Nanocrystalline Surface Modification Technique, Wear, 2014, 332–333, p 891–899Google Scholar
  7. 7.
    T. Wang, D. Wang, G. Liu, B. Gong, and N. Song, Investigations on the Nanocrystallization of 40Cr Using Ultrasonic Surface Rolling Processing, Appl. Surf. Sci., 2008, 255(5), p 1824–1829CrossRefGoogle Scholar
  8. 8.
    H.W. Huang, Z.B. Wang, J. Lu, and K. Lu, Fatigue Behaviors of AISI, 316L Stainless Steel with a Gradient Nanostructured Surface Layer, Acta Mater., 2015, 87, p 150–160CrossRefGoogle Scholar
  9. 9.
    A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, and E.A. Sinyakova, Mechanisms of Surface Roughening of Commercial Purity Titanium During Ultrasonic Impact Treatment, Mater. Sci. Eng., A, 2015, 647, p 43–50CrossRefGoogle Scholar
  10. 10.
    H. Wang, G. Song, and G. Tang, Effect of Electropulsing on Surface Mechanical Properties and Microstructure of AISI, 304 Stainless Steel During Ultrasonic Surface Rolling Process, Mater. Sci. Eng., A, 2016, 662, p 456–467CrossRefGoogle Scholar
  11. 11.
    Z. Sun, H. Wang, Y. Ye, Z. Xu, and G. Tang, Effects of Electropulsing on the Machinability and Microstructure of GH4169 Superalloy During Turning Process, Int. J. Adv. Manuf. Technol., 2018, 95(5–8), p 2835–2842CrossRefGoogle Scholar
  12. 12.
    X. Li, F. Wang, X. Li, G. Tang, and J. Zhu, Improvement of Formability of Mg-3Al-1Zn Alloy Strip by Electroplastic-Differential Speed Rolling, Mater. Sci. Eng., A, 2014, 618, p 500–504CrossRefGoogle Scholar
  13. 13.
    J. Kuang, X. Du, X. Li, Y. Yang, A.A. Luo, and G. Tang, Athermal Influence of Pulsed Electric Current on the Twinning Behavior of Mg-3Al-1Zn Alloy During Rolling, Scripta Mater., 2016, 114, p 151–155CrossRefGoogle Scholar
  14. 14.
    R. Zhu, G. Tang, S. Shi, and M. Fu, Effect of Electroplastic Rolling on Deformability and Oxidation of NiTiNb Shape Memory Alloy, J. Mater. Process. Technol., 2013, 213(1), p 30–35CrossRefGoogle Scholar
  15. 15.
    Q. Xu, L. Guan, Y. Jiang, G. Tang, and S. Wang, Improved Plasticity of Mg-Al-Zn Alloy by Electropulsing Tension, Mater. Lett., 2010, 64(9), p 1085–1087CrossRefGoogle Scholar
  16. 16.
    R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, and B. Elliottbowman, Electropulsed Steels, Mater. Sci. Technol., 2014, 30(9), p 1040CrossRefGoogle Scholar
  17. 17.
    H. Li, W. Tong, J. Cui, H. Zhang, L. Chen, and L. Zuo, The Influence of Deep Cryogenic Treatment on the Properties of High-Vanadium Alloy Steel, Mater. Sci. Eng., A, 2016, 662, p 356–362CrossRefGoogle Scholar
  18. 18.
    D. Das, A.K. Dutta, and K.K. Ray, Sub-Zero Treatments of AISI, D2 Steel: Part I. Microstructure and Hardness, Mater. Sci. Eng., A, 2010, 527(9), p 2182–2193CrossRefGoogle Scholar
  19. 19.
    D. Das, A. Dutta, and K. Ray, On the Refinement of Carbide Precipitates by Cryotreatment in AISI, D2 Steel, Phil. Mag., 2009, 89(1), p 55–76CrossRefGoogle Scholar
  20. 20.
    Y. He, K. Yang, W. Qu, F. Kong, and G. Su, Strengthening and Toughening of a 2800-MPa Grade Maraging Steel, Mater. Lett., 2002, 56(5), p 763–769CrossRefGoogle Scholar
  21. 21.
    F.J.D. Silva, S.D. Franco, Á.R. Machado, E.O. Ezugwu, and A.M.S. Jr., Performance of Cryogenically Treated HSS Tools, Wear, 2006, 261(5), p 674–685CrossRefGoogle Scholar
  22. 22.
    S. Zhirafar, A. Rezaeian, and M. Pugh, Effect of Cryogenic Treatment on the Mechanical Properties of 4340 Steel, J. Mater. Process. Technol., 2007, 186(1–3), p 298–303CrossRefGoogle Scholar
  23. 23.
    V. Leskovšek, M. Kalin, and J. Vižintin, Influence of Deep-Cryogenic Treatment on Wear Resistance of Vacuum Heat-Treated HSS, Vacuum, 2006, 80(6), p 507–518CrossRefGoogle Scholar
  24. 24.
    H. Liu, J. Wang, H. Yang, and B. Shen, Effects of Cryogenic Treatment on Microstructure and Abrasion Resistance of CrMnB High-Chromium Cast Iron Subjected to Sub-critical Treatment, Mater. Sci. Eng., A, 2008, 478(1–2), p 324–328CrossRefGoogle Scholar
  25. 25.
    K.S. Ayl Yong and M. Rahman, Performance Evaluation of Cryogenically Treated Tungsten Carbide Tools in Turning, Int. J. Mach. Tools Manuf, 2006, 46(15), p 2051–2056CrossRefGoogle Scholar
  26. 26.
    M. Preciado, P.M. Bravo, and J.M. Alegre, Effect of Low Temperature Tempering Prior Cryogenic Treatment on Carburized Steels, J. Mater. Process. Technol., 2006, 176(1), p 41–44CrossRefGoogle Scholar
  27. 27.
    K. Amini, S. Nategh, and A. Shafyei, Influence of Different Cryotreatments on Tribological Behavior of 80CrMo12 5 Cold Work Tool Steel, Mater. Des., 2010, 31(10), p 4666–4675CrossRefGoogle Scholar
  28. 28.
    R. Thornton, T. Slatter, A.H. Jones, and R. Lewis, The Effects of Cryogenic Processing on the Wear Resistance of Grey Cast Iron Brake Discs, Wear, 2011, 271(9–10), p 2386–2395CrossRefGoogle Scholar
  29. 29.
    A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, and K.H. Stiasny, Effect of Deep Cryogenic Treatment on the Mechanical Properties of Tool Steels, J. Mater. Process. Technol., 2001, 118(1–3), p 350–355CrossRefGoogle Scholar
  30. 30.
    Y. Dong, X.P. Lin, and H.S. Xiao, Deep Cryogenic Treatment of High-Speed Steel and Its Mechanism, Heat Treat. Met., 1998, 25(3), p 55–59Google Scholar
  31. 31.
    W. Zhuang, Q. Liu, R. Djugum, P.K. Sharp, and A. Paradowska, Deep Surface Rolling for Fatigue Life Enhancement of Laser Clad Aircraft Aluminium Alloy, Appl. Surf. Sci., 2014, 320(320), p 558–562CrossRefGoogle Scholar
  32. 32.
    H. Wang, G. Song, and G. Tang, Evolution of Surface Mechanical Properties and Microstructure of Ti 6Al 4 V Alloy Induced by Electropulsing-Assisted Ultrasonic Surface Rolling Process, J. Alloy. Compd., 2016, 681, p 146–156CrossRefGoogle Scholar
  33. 33.
    H. Wang, G. Song, and G. Tang, Enhanced Surface Properties of Austenitic Stainless Steel by Electropulsing-Assisted Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2015, 282, p 149–154CrossRefGoogle Scholar
  34. 34.
    N.B. Dhokey and P.K. Lalge, Influence of Cryosoaking Period on Wear Characteristics and Surface Topography of M35 Tool Steel, Tribol. Mater. Surf. Interfaces, 2018, 12, p 170–175CrossRefGoogle Scholar
  35. 35.
    H. Torkamani, S. Raygan, and J. Rassizadehghani, Comparing Microstructure and Mechanical Properties of AISI, D2 Steel After Bright Hardening and Oil Quenching, Mater. Des., 2014, 54, p 1049–1055CrossRefGoogle Scholar
  36. 36.
    J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe, Microstructures and Dislocation Configurations in Nanostructured Cu Processed by Repetitive Corrugation and Straightening, Acta Mater., 2001, 49(9), p 1497–1505CrossRefGoogle Scholar
  37. 37.
    K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng., A, 2004, 375–377(1), p 38–45CrossRefGoogle Scholar
  38. 38.
    X.C. Liu, H.W. Zhang, and K. Lu, Strain-Induced Ultrahard and Ultrastable Nanolaminated Structure in Nickel, Science, 2013, 342(6156), p 337–340CrossRefGoogle Scholar
  39. 39.
    N.A. Mara, A.V. Sergueeva, T.D. Mara, S.X. Mcfadden, and A.K. Mukherjee, Superplasticity and Cooperative Grain Boundary Sliding in Nanocrystalline Ni3Al, Mater. Sci. Eng., A, 2007, 463(1), p 238–244CrossRefGoogle Scholar
  40. 40.
    S. Ren, Z. Sun, Z. Xu, R. Xin, J. Yao, D. Lv, and J. Chang, Effects of Twins and Precipitates at Twin Boundaries on Hall-Petch Relation in High Nitrogen Stainless Steel, J. Mater. Res., 2018, 33(12), p 1764–1772CrossRefGoogle Scholar
  41. 41.
    H.G. Nanesa, J. Boulgakoff, and M. Jahazi, Influence of Prior Cold Deformation on Microstructure Evolution of AISI, D2 Tool Steel After Hardening Heat Treatment, J. Manuf. Process, 2016, 22, p 115–119CrossRefGoogle Scholar
  42. 42.
    M.A. Hamidzadeh, M. Meratian, and M.M. Zahrani, A Study on the Microstructure and Mechanical Properties of AISI, D2 Tool Steel Modified by Niobium, Mater. Sci. Eng., A, 2010, 556(12), p 758–766Google Scholar
  43. 43.
    S. Li, Y. Xie, and X. Wu, Hardness and Toughness Investigations of Deep Cryogenic Treated Cold Work Die Steel, Cryogenics, 2010, 50(2), p 89–92CrossRefGoogle Scholar
  44. 44.
    M. Pérez and F.J. Belzunce, The Effect of Deep Cryogenic Treatments on the Mechanical Properties of an AISI, H13 Steel, Mater. Sci. Eng., A, 2015, 624, p 32–40CrossRefGoogle Scholar
  45. 45.
    T.V. Pirtovšek, G. Kugler, and M. Terčelj, The Behaviour of the Carbides of Ledeburitic AISI, D2 Tool Steel During Multiple Hot Deformation Cycles, Mater. Charact., 2013, 83(3), p 97–108CrossRefGoogle Scholar
  46. 46.
    D. Senthilkumar, I. Rajendran, M. Pellizzari, and J. Siiriainen, Influence of Shallow and Deep Cryogenic Treatment on the Residual State of Stress of 4140 Steel, J. Mater. Process. Technol., 2011, 211(3), p 396–401CrossRefGoogle Scholar
  47. 47.
    K. Amini, A. Akhbarizadeh, and S. Javadpour, Investigating the Effect of Holding Duration on the Microstructure of 1.2080 Tool Steel During the Deep Cryogenic Heat Treatment, Vacuum, 2012, 86(10), p 1534–1540CrossRefGoogle Scholar
  48. 48.
    A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, Y.N. Petrov, and V.G. Gavriljuk, Low-Temperature Martensitic Transformation and Deep Cryogenic Treatment of a Tool Steel, Mater. Sci. Eng., A, 2010, 527(26), p 7027–7039CrossRefGoogle Scholar
  49. 49.
    P. Jurči, M. Dománková, Ľ. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, and D. Jenko, Microstructure and Hardness of Sub-Zero Treated and No Tempered P/M Vanadis 6 Ledeburitic Tool Steel, Vacuum, 2015, 111, p 92–101CrossRefGoogle Scholar
  50. 50.
    G.A. Fontalvo, R. Humer, C. Mitterer, K. Sammt, and I. Schemmel, Microstructural Aspects Determining the Adhesive Wear of Tool Steels, Wear, 2006, 260(9–10), p 1028–1034CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Shuai Ren
    • 1
    Email author
  • Yunfei Zhang
    • 1
  • Yingli Zhao
    • 1
  • Zhiguo An
    • 1
  • Feng Xue
    • 1
  • Jitan Yao
    • 1
  • Zhiyan Sun
    • 1
  • Jinbao Chang
    • 1
  1. 1.HBIS Group Technology Research InstituteShijiazhuangPeople’s Republic of China

Personalised recommendations