Effect of Precompression Deformation on the Strain-Controlled Low-Cycle Fatigue Behavior of Extruded AZ31 Magnesium Alloy

  • Yuxian Meng
  • Lilan Gao
  • Hong GaoEmail author
  • Xin Yuan


In this work, the effect of precompression along the extrusion direction on the strain-controlled low-cycle fatigue behavior of an extruded AZ31 magnesium alloy was investigated. After precompression deformation occurred, the tensile yield strength decreased, whereas the tensile yield strength and ultimate tensile strength increased gradually as precompression deformation increased. The shape of the stress–strain hysteresis of a specimen with 5% precompression deformation changed from asymmetrical to symmetrical compared with that of the as-extruded specimen. Hence, the whole process was likely dominated by twinning–detwinning behavior. Fractographic analysis revealed that the crack propagation region of the specimen with 5% precompression deformation was flatter than that of the as-extruded specimen because of the compressive mean stress and finer grains in the specimen with 5% precompression deformation. The fatigue lives of the as-extruded and precompression specimens were predicted by the Coffin–Manson model, the Ellyin energy model, the Smith–Watson–Topper model, the Fatemi–Socie model, and the Jiang model, respectively. The life predicted by the Ellyin energy model and the Jiang model was consistent with the experimental data.


AZ31 magnesium alloy fatigue life prediction fractographic analysis low-cycle fatigue precompression tensile properties 



The project was supported by the National Natural Science Foundation of China (Nos. 51571150, 11572222) and the Tianjin Municipal Science and Technology Support Project (No. 16YFZCSF00510).


  1. 1.
    Y.C. Lin, L.H. Liu, X.M. Chen, and Z.L. Long, Cyclic Plasticity Constitutive Model for Uniaxial Ratcheting Behavior of AZ31B Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24, p 1820–1833CrossRefGoogle Scholar
  2. 2.
    Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Stress-Based Fatigue Life Prediction Models for AZ31B Magnesium Alloy Under Single-Step and Multi-step Asymmetric Stress-Controlled Cyclic Loadings, Comput. Mater. Sci., 2013, 73, p 128–138CrossRefGoogle Scholar
  3. 3.
    Y.C. Lin, X.M. Chen, and G. Chen, Uniaxial Ratcheting and Low-Cycle Fatigue Failure Behaviors of AZ91D Magnesium Alloy Under Cyclic Tension Deformation, J. Alloys Compd., 2011, 509, p 6838–6843CrossRefGoogle Scholar
  4. 4.
    B. Pourbahari, H. Mirzadeh, and M. Emamy, Toward Unraveling the Effects of Intermetallic Compounds on the Microstructure and Mechanical Properties of Mg-Gd-Al-Zn Magnesium Alloys in the As-Cast, Homogenized, and Extruded Conditions, Mater. Sci. Eng. A, 2017, 680, p 39–46CrossRefGoogle Scholar
  5. 5.
    W.Y. Jiang, T. Chen, L.P. Wang, Y.C. Feng, Y. Zhu, K.F. Wang, J.P. Luo, and S.W. Zhang, Microstructure in the Semi-Solid State and Mechanical Properties of AZ80 Magnesium Alloy Reheated from the As-Cast and Extruded States, Acta Metall., 2013, 26, p 473–482CrossRefGoogle Scholar
  6. 6.
    X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner, Hardening Evolution of AZ31B Mg Sheet, Int. J. Plast., 2007, 23, p 44–86CrossRefGoogle Scholar
  7. 7.
    J.J. He, T.M. Liu, S. Xu, and Y. Zhang, The Effects of Compressive Pre-deformation on Yield Asymmetry in Hot-Extruded Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2013, 579, p 1–8CrossRefGoogle Scholar
  8. 8.
    S.H. Park, S.G. Hong, and C.S. Lee, Role of Initial {10-12} Twin in the Fatigue Behavior of Rolled Mg-3Al-1Zn Alloy, Scr. Mater., 2010, 62, p 666–669CrossRefGoogle Scholar
  9. 9.
    T. Hama, H. Nagao, Y. Kuchinomachi, and H. Takuda, Effect of Pre-strain on Work-Hardening Behavior of Magnesium Alloy Sheets Upon Cyclic Loading, Mater. Sci. Eng. A, 2014, 591, p 69–77CrossRefGoogle Scholar
  10. 10.
    S.H. Park, Effect of Initial Twins on the Stress-Controlled Fatigue Behavior of Rolled Magnesium Alloy, Mater. Sci. Eng. A, 2017, 680, p 214–220CrossRefGoogle Scholar
  11. 11.
    S.H. Park, S.G. Hong, J.H. Lee, S.H. Kim, Y.R. Cho, J.H. Yoon, and C.S. Lee, Effects of Pre-tension on Fatigue Behavior of Rolled Magnesium Alloy, Mater. Sci. Eng. A, 2017, 680, p 351–358CrossRefGoogle Scholar
  12. 12.
    G.S. Huang, J.H. Li, T.Z. Han, H. Zhang, and F.S. Pan, Improving Low-Cycle Fatigue Properties of Rolled AZ31 Magnesium Alloy by Pre-compression Deformation, Mater. Des., 2014, 58, p 439–444CrossRefGoogle Scholar
  13. 13.
    Q. Ma, H.E. Kadiri, A.L. Oppedal, J.C. Baird, B. Li, M.F. Horstemeyer, and S.C. Vogel, Twinning Effects in a Rod-Textured AM30 Magnesium Alloy, Int. J. Plast., 2012, 29, p 60–76CrossRefGoogle Scholar
  14. 14.
    J.J. He, T.M. Liu, Y. Zhang, S. Xu, L.W. Lu, and J. Tan, Deformation Behaviour of Hot Extruded Mg Alloy AZ31 During Compressive Deformation, Mater. Sci. Technol., 2013, 29, p 177–183CrossRefGoogle Scholar
  15. 15.
    J.J. He, T.M. Liu, H.B. Chen, Z.X. Long, L.W. Lu, and F.S. Pan, Roles of Detwinning in Strain Hardening and Ultimate Elongation in Extruded Mg-3Al-1Zn Alloy, Mater. Sci. Technol., 2014, 30, p 1343–1348CrossRefGoogle Scholar
  16. 16.
    D. Sarker, J. Friedman, and D.L. Chen, Influence of Pre-strain on De-twinning Activity in an Extruded AM30 Magnesium Alloy, Mater. Sci. Eng. A, 2014, 605, p 73–79CrossRefGoogle Scholar
  17. 17.
    L.F. Wanga, G.S. Huang, Q. Quan, P. Bassani, E. Mostaed, M. Vedani, and F.S. Pan, The Effect of Twinning and Detwinning on the Mechanical Property of AZ31 Extruded Magnesium Alloy During Strain-Path Changes, Mater. Des., 2014, 63, p 177–184CrossRefGoogle Scholar
  18. 18.
    L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of {10-12} Extension Twinning on the Flow Behavior of AZ31 Mg Alloy, Mater. Sci. Eng. A, 2007, 445, p 302–309CrossRefGoogle Scholar
  19. 19.
    G. Chen, L.T. Lu, Y. Cui, R.S. Xing, H. Gao, and X. Chen, Ratcheting and Low-Cycle Fatigue Characterizations of Extruded AZ31B Mg Alloy With and Without Corrosive Environment, Int. J. Fatigue, 2015, 80, p 364–371CrossRefGoogle Scholar
  20. 20.
    Q. Yu, J.X. Zhang, Y.Y. Jiang, and Q.Z. Li, An Experimental Study on Cyclic Deformation and Fatigue of Extruded ZK60 Magnesium Alloy, Int. J. Fatigue, 2012, 36, p 47–58CrossRefGoogle Scholar
  21. 21.
    Y. Xiong and Y.Y. Jiang, Fatigue of ZK60 Magnesium Alloy Under Uniaxial Loading, Int. J. Fatigue, 2014, 64, p 74–83CrossRefGoogle Scholar
  22. 22.
    P.R.V. Evans, N.B. Owen, and L.N. McCartney, Mean Stress Effects on Fatigue Crack Growth and Failure in a Rail Steel, Eng. Fract. Mech., 1974, 6, p 183–186CrossRefGoogle Scholar
  23. 23.
    J. Dallmeier, O. Huber, H. Saage, and K. Eigenfeld, Uniaxial Cyclic Deformation and Fatigue Behavior of AM50 Magnesium Alloy Sheet Metals Under Symmetric and Asymmetric Loadings, Mater. Des., 2015, 70, p 10–30CrossRefGoogle Scholar
  24. 24.
    Q. Yu, J. Zhang, Y. Jiang, and Q. Li, Effect of Strain Ratio on Cyclic Deformation and Fatigue of Extruded AZ61A Magnesium Alloy, Int. J. Fatigue, 2012, 44, p 225–233CrossRefGoogle Scholar
  25. 25.
    W. Wu, S.Y. Lee, A.M. Paradowska, Y.F. Gao, and P.K. Liaw, Twinning–Detwinning Behavior During Fatigue-Crack Propagation in a Wrought Magnesium Alloy AZ31B, Mater. Sci. Eng. A, 2012, 556, p 278–286CrossRefGoogle Scholar
  26. 26.
    Ö. Duygulu and S.R. Agnew, Plastic Anisotropy and the Role of Non-basal Slip in Magnesium Alloy AZ31B, Int. J. Plast., 2005, 21, p 1161–1193CrossRefGoogle Scholar
  27. 27.
    P. Verma, N.C.S. Srinivas, S.R. Singh, and V. Singh, Low Cycle Fatigue Behavior of Modified 9Cr-1Mo Steel at Room Temperature, Mater. Sci. Eng. A, 2016, 652, p 30–41CrossRefGoogle Scholar
  28. 28.
    S.H. Kim, S.G. Hong, J.H. Lee, C.S. Lee, J. Yoon, H. Yu, and S.H. Park, Anisotropic In-Plane Fatigue Behavior of Rolled Magnesium Alloy with {10-12} Twins, Mater. Sci. Eng. A, 2017, 700, p 191–197CrossRefGoogle Scholar
  29. 29.
    Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Uniaxial Ratcheting and Fatigue Failure Behaviors of Hot-Rolled AZ31B Magnesium Alloy Under Asymmetrical Cyclic Stress-Controlled Loadings, Mater. Sci. Eng. A, 2013, 573, p 234–244CrossRefGoogle Scholar
  30. 30.
    Y.C. Lin, X.M. Chen, and J. Chen, Low-Cycle Fatigue Behaviors of Hot-Rolled AZ91 Magnesium Alloy Under Asymmetrical Stress-Controlled Cyclic Loadings, J. Alloys Compd., 2013, 579, p 540–548CrossRefGoogle Scholar
  31. 31.
    S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy, Metall. Mater. Trans., 2008, 39, p 3014–3026CrossRefGoogle Scholar
  32. 32.
    S. Begum, D.L. Chen, S. Xu, and A.A. Luo, Low Cycle Fatigue Properties of an Extruded AZ31 Magnesium Alloy, Int. J. Fatigue, 2009, 31, p 726–735CrossRefGoogle Scholar
  33. 33.
    X.Z. Lin and D.L. Chen, Strain-Controlled Cyclic Deformation Behavior of an Extruded Magnesium Alloy, Mater. Sci. Eng. A, 2008, 496, p 106–113CrossRefGoogle Scholar
  34. 34.
    S. Hasegawa, Y. Tsuchida, H. Yano, and M. Matsui, Evaluation of Low Cycle Fatigue Life in AZ31 Magnesium Alloy, Int. J. Fatigue, 2007, 29, p 1839–1845CrossRefGoogle Scholar
  35. 35.
    A.A. Roostaei and H. Jahed, Role of Loading Direction on Cyclic Behavior Characteristics of AM30 Extrusion and Its Fatigue Damage Modelling, Mater. Sci. Eng. A, 2016, 670, p 26–40CrossRefGoogle Scholar
  36. 36.
    S.H. Park, S.G. Hong, W.K. Bang, and C.S. Lee, Effect of Anisotropy on the Low-Cycle Fatigue Behavior of Rolled AZ31 Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 417–423CrossRefGoogle Scholar
  37. 37.
    S.H. Park, S.G. Hong, B.H. Lee, W.K. Bang, and C.S. Lee, Low-Cycle Fatigue Characteristics of Rolled Mg-3Al-1Zn Alloy, Int. J. Fatigue, 2010, 32, p 1835–1842CrossRefGoogle Scholar
  38. 38.
    F. Ellyin and K. Golos, Multiaxial Fatigue Damage Criterion, J. Eng. Mater. Technol., 1988, 110, p 63–68CrossRefGoogle Scholar
  39. 39.
    F. Ellyin and Z. Xia, A General Fatigue Theory and Its Application to Out-Of-Phase Cyclic Loading, Trans. ASME J. Eng. Mater. Technol., 1993, 115, p 411–416CrossRefGoogle Scholar
  40. 40.
    Y.C. Lin, X.M. Chen, Z.H. Liu, and J. Chen, Investigation of Uniaxial Low-Cycle Fatigue Failure Behavior of Hot-Rolled AZ91 Magnesium Alloy, Int. J. Fatigue, 2008, 48, p 122–132CrossRefGoogle Scholar
  41. 41.
    S. Kalnaus and Y.Y. Jiang, Fatigue of AL6XN Stainless Steel, J. Eng. Mater. Technol., 2008, 130, p 031013CrossRefGoogle Scholar
  42. 42.
    F. Castro and Y.Y. Jiang, Fatigue Life and Early Cracking Predictions of Extruded AZ31B Magnesium Alloy Using Critical Plane Approaches, Int. J. Fatigue, 2016, 88, p 236–246CrossRefGoogle Scholar
  43. 43.
    T. Zhao and Y. Jiang, Fatigue of 7075-T651 Aluminum Alloy, Int. J. Fatigue, 2008, 30, p 834–849CrossRefGoogle Scholar
  44. 44.
    K.N. Smith, P. Watson, and T.H. Topper, A Stress–Strain Function for the Fatigue of Metals, J. Mater., 1970, 5, p 767–778Google Scholar
  45. 45.
    A. Fatemi and D.F. Socie, A Critical Plane Approach to Multiaxial Fatigue Damage Including Out of Phase Loading, Fatigue Fract. Eng. Mater. Struct., 1988, 11, p 149–165CrossRefGoogle Scholar
  46. 46.
    Y. Jiang, A Fatigue Criterion for General Multiaxial Loading, Fatigue Fract. Eng. Mater. Struct., 1999, 23, p 19–32CrossRefGoogle Scholar
  47. 47.
    Y.J. Qiao, Q. Sun, C.W. Li, J. Li, and Z.P. Zhang, The Fatigue Limit Estimation Methods for Alloy Steels and Aluminum Alloys, Mech. Eng., 2007, 29, p 47–50Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Mechanical EngineeringTianjin University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations