Advertisement

Improvement of Microstructure and Mechanical Properties of CoCrCuFeNi High-Entropy Alloys By V Addition

  • Gang Qin
  • Shu Wang
  • Ruirun Chen
  • Huiting Zheng
  • Liang Wang
  • Yanqing Su
  • Jingjie Guo
  • Hengzhi Fu
Article
  • 70 Downloads

Abstract

V element had positive effect in improving the strength of many alloys, so it was possible that V had potential to strengthen CoCrCuFeNi high-entropy alloys (HEAs) with face-centered cubic (FCC) crystal structure, which was relatively weak in strength and had outstanding ductility. In this paper, we studied the alloying effect of V on the phase evolution, microstructure and the mechanical properties of the (CoCrCuFeNi)100−xVx (x = 0-16, atomic ratio, hereafter in at.%) HEAs systematically. The results showed that V element had capacity to induce sigma phase precipitation. The volume fraction of sigma phase increased from 0 to 12%; the compressive yield stress of (CoCrCuFeNi)100−xVx HEAs increased from 300 to 613 MPa with V content increasing from 0 to 16% (atomic ratio, hereafter in at.%). However, the compression fracture strain decreased from 50 to 28%. V addition was beneficial in improving the strength of CoCrCuFeNi HEA, and the increase in sigma phase volume fraction was the key factor for the improvement of the (CoCrCuFeNi)100−xVx HEAs in yield stress.

Keywords

high-entropy alloys mechanical properties phase precipitation V element 

Notes

Acknowledgment

This work was supported by the Fund of State Key Laboratory of Advanced Welding and Joining and National Key Research and Development Program of China (2017YFA0403804).

References

  1. 1.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6, p 299–303CrossRefGoogle Scholar
  2. 2.
    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218CrossRefGoogle Scholar
  3. 3.
    S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, and Z.F. Zhang, Enhanced Strength and Ductility of Bulk CoCrFeMnNi High Entropy Alloy Having Fully Recrystallized Ultrafine-Grained Structure, Mater. Des., 2017, 133, p 122–127CrossRefGoogle Scholar
  4. 4.
    Y. Liu, Y. Zhang, H. Zhang, N. Wang, X. Chen, H. Zhang, and Y. Li, Microstructure and Mechanical Properties of Refractory HfMo0.5NbTiV0.5Six High-Entropy Composites, J. Alloys Compd., 2017, 694, p 869–876CrossRefGoogle Scholar
  5. 5.
    X.W. Liu, L. Liu, G. Liu, X.X. Wu, D.H. Lu, J.Q. Yao, W.M. Jiang, Z.T. Fan, and W.B. Zhang, The Role of Carbon in Grain Refinement of Cast CrFeCoNi High-Entropy Alloys, Metall. Mater. Trans. A, 2018, 49, p 2151–2160CrossRefGoogle Scholar
  6. 6.
    Y. Zhang, T.T. Zuo, Z. Tang, Z. Tang, M. Gao, K. Dahmen, P. Liaw, and Z. Lu, Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, Y. Liu, Y. Li, X. Chen, and H. Zhang, Microstructure and Mechanical Properties of a Refractory HfNbTiVSi0.5 High-Entropy Alloy Composite, Mater. Lett., 2016, 174, p 82–85CrossRefGoogle Scholar
  8. 8.
    S.J. Sun, Y.Z. Tian, H.R. Lin, H.J. Yang, X.G. Dong, Y.H. Wang, and Z.F. Zhang, Transition of Twinning Behavior in CoCrFeMnNi High Entropy Alloy with Grain Refinement, Mater. Sci. Eng. A, 2018, 712, p 603–607CrossRefGoogle Scholar
  9. 9.
    L. Yuan, C. Min, Y. Li, and X. Chen, Microstructure and Mechanical Performance of AlxCoCrCuFeNi High-Entropy Alloys, Rare Metal Mater. Eng., 2009, 38, p 1602–1607Google Scholar
  10. 10.
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H.J. Kang, T.M. Wang, B. Wen, Z.J. Wang, J.C. Jie, Z.Q. Cao, H.H. Ruan, and T.J. Li, A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys, Sci. Rep., 2014, 4, p 6200CrossRefGoogle Scholar
  11. 11.
    Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, and T. Li, Directly Cast Bulk Eutectic and Near-Eutectic High Entropy Alloys with Balanced Strength and Ductility in a Wide Temperature Range, Acta Mater., 2017, 124, p 143–150CrossRefGoogle Scholar
  12. 12.
    X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, and Y. Zhao, Microstructural Origins of High Strength and High Ductility in an AlCoCrFeNi2.1 Eutectic High-Entropy Alloy, Acta Mater., 2007, 141, p 59–66CrossRefGoogle Scholar
  13. 13.
    B. Wang, A. Fu, X. Huang, B. Liu, Y. Liu, Z. Li, and X. Zan, Mechanical Properties and Microstructure of the CoCrFeMnNi High Entropy Alloy Under High Strain Rate Compression, J. Mater. Eng. Perform., 2016, 25, p 2985–2992CrossRefGoogle Scholar
  14. 14.
    C. Zhang, G.F. Wu, and P.Q. Dai, Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2, High-Entropy Alloy. J. Mater. Eng. Perform., 2015, 24, p 1918–1925CrossRefGoogle Scholar
  15. 15.
    J.Q. Yao, X.W. Liu, N. Gao, Q.H. Jiang, N. Li, G. Liu, W.B. Zhang, and Z.T. Fan, Phase Stability of a Ductile Single-Phase BCC Hf0.5Nb0.5Ta0.5Ti1.5Zr Refractory High-Entropy Alloy, Intermetallics, 2018, 98, p 79–88CrossRefGoogle Scholar
  16. 16.
    R. Chen, G. Qin, H. Zheng, L. Wang, S. Yanqing, Y. Chiu, H. Ding, J. Guo, and F. Hengzhi, Composition Design of High Entropy Alloys Using the Valence Electron Concentration to Balance Strength and Ductility, Acta Mater., 2018, 144, p 129–137CrossRefGoogle Scholar
  17. 17.
    G. Qin, W. Xue, C. Fan, R. Chen, L. Wang, S. Yanqing, H. Ding, and J. Guo, Effect of Co Content on Phase Formation and Mechanical Properties of (AlCoCrFeNi)100−xCox High-Entropy Alloys, Mater. Sci. Eng. A, 2018, 710, p 200–205CrossRefGoogle Scholar
  18. 18.
    G. Qin, S. Wang, R. Chen, X. Gong, L. Wang, Y. Su, J. Guo, and H. Fu, Microstructures and Mechanical Properties of Nb-Alloyed CoCrCuFeNi High-Entropy Alloys, J. Mater. Sci. Technol., 2018, 34, p 365–369CrossRefGoogle Scholar
  19. 19.
    X. Jin, Y. Zhou, L. Zhang, and X.B. Li, A New Pseudo Binary Strategy to Design Eutectic High Entropy Alloys Using Mixing Enthalpy and Valence Electron Concentration, Mater. Des., 2018, 143, p 49–55CrossRefGoogle Scholar
  20. 20.
    L. Zhang, Y. Zhou, X. Jin, X. Du, and B. Li, The Microstructure and High-Temperature Properties of Novel Nano Precipitation-Hardened Face Centered Cubic High-Entropy Superalloys, Scr. Mater., 2018, 146, p 226–230CrossRefGoogle Scholar
  21. 21.
    Y. Dong, L. Jiang, Z. Tang, Y. Lu, and T. Li, Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2, High-Entropy Alloy. J. Mater. Eng. Perform., 2015, 24, p 4475–4481CrossRefGoogle Scholar
  22. 22.
    L. Tian, Z.M. Jiao, G.Z. Yuan, S.G. Ma, Z.H. Wang, H.J. Yang, Y. Zhang, and J.W. Qiao, Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation, J. Mater. Eng. Perform., 2016, 25, p 2255–2260CrossRefGoogle Scholar
  23. 23.
    A. Li, D. Ma, and Q. Zheng, Effect of Cr on Microstructure and Properties of a Series of AlTiCrx FeCoNiCu High-Entropy Alloys, J. Mater. Eng. Perform., 2014, 23, p 1197–1203CrossRefGoogle Scholar
  24. 24.
    N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, E.E. Oleynik, A.S. Tortika, and O.N. Senkov, Effect of V Content on Microstructure and Mechanical Properties Of the CoCrFeMnNiVx, High Entropy Alloys, J. Alloys Compd., 2015, 628, p 170–185CrossRefGoogle Scholar
  25. 25.
    X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen, Novel Microstructure and Properties of Multicomponent CoCrCuFeNiTix Alloys, Intermetallics, 2007, 15, p 357–362CrossRefGoogle Scholar
  26. 26.
    J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System, Acta Mater., 2014, 62, p 105–113CrossRefGoogle Scholar
  27. 27.
    B.S. Li, Y.P. Wang, M.X. Ren, C. Yang, and H.Z. Fu, Effects of Mn, Ti and V on the Microstructure and Properties of AlCrFeCoNiCu High Entropy Alloy, Mater. Sci. Eng. A, 2008, 498(1–2), p 482–486CrossRefGoogle Scholar
  28. 28.
    Y. Dong, K. Zhou, Y. Lu, X. Gao, T.M. Wang, and T. Li, Effect of Vanadium Addition on the Microstructure and Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2014, 57, p 67–72CrossRefGoogle Scholar
  29. 29.
    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.-H. Lai, and J.W. Yeh, Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys, Intermetallics, 2012, 26(7), p 44–51CrossRefGoogle Scholar
  30. 30.
    W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, and M.W. Chen, Ductile CoCrFeNiMox High Entropy Alloys Strengthened By Hard Intermetallic Phases, Acta Mater., 2016, 116, p 332–342CrossRefGoogle Scholar
  31. 31.
    F. He, Z. Wang, P. Cheng, Q. Wang, J.J. Li, Y.Y. Dang, J.C. Wang, and C.T. Liu, Designing Eutectic High Entropy Alloys of CoCrFeNiNbx, J. Alloys Compd., 2015, 656, p 284–289CrossRefGoogle Scholar
  32. 32.
    S.G. Ma and Y. Zhang, Effect of Nb Addition on the Microstructure And Properties of AlCoCrFeNi High-Entropy Alloy, Mater. Sci. Eng. A, 2012, 532, p 480–486CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10, p 534–538CrossRefGoogle Scholar
  34. 34.
    W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, and C.T. Liu, Effects of Nb Additions on the Microstructure and Mechanical Property of CoCrFeNi High-Entropy Alloys, Intermetallics, 2015, 60, p 1–8CrossRefGoogle Scholar
  35. 35.
    J. Chen, P. Niu, Y. Liu, and J. Liu, Effect of Zr Content on Microstructure and Mechanical Properties of AlCoCrFeNi High Entropy Alloy, Mater. Des., 2016, 94, p 39–44CrossRefGoogle Scholar
  36. 36.
    T. Egami and Y. Waseda, Atomic Size Effect on the Formability of Metallic Glasses, J. Non-Cryst. Solids, 1984, 64, p 113–134CrossRefGoogle Scholar
  37. 37.
    W. Jackson, Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater. Lett., 2015, 138, p 78–80CrossRefGoogle Scholar
  38. 38.
    J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Synthesis and Properties of Multiprincipal Component AlCoCrFeNiSix, Alloys. Mater. Sci. Eng. A, 2010, 527, p 7210–7214CrossRefGoogle Scholar
  39. 39.
    X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-Component Alloys, Mater. Chem. Phys., 2012, 132, p 233–238CrossRefGoogle Scholar
  40. 40.
    Z. Li, K.G. Pradeep, and Y. Deng, Metastable High-Entropy Dual-Phase Alloys Overcome the Strength-Ductility Trade-off, Nature, 2016, 534, p 227–230CrossRefGoogle Scholar
  41. 41.
    Y. Zhang, Z.P. Lu, S.G. Ma, P.K. Liaw, Z. Tang, Y.Q. Cheng, and M.C. Gao, Guidelines in Predicting Phase Formation of High-Entropy Alloys, Mrs Commun., 2014, 42, p 57–62CrossRefGoogle Scholar
  42. 42.
    S.W. Tsai, Theory of Composites Design, Think Composites Press, 1992Google Scholar
  43. 43.
    S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of FCC or BCC Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109, p 645–647Google Scholar
  44. 44.
    S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. : Mater. Int., 2011, 21, p 433–446CrossRefGoogle Scholar
  45. 45.
    S. Fang, X. Xiao, X. Lei, W. Li, and Y. Dong, Relationship Between the Widths of Supercooled Liquid Regions and Bond Parameters of Mg-Based Bulk Metallic Glasses, J. Non-Cryst. Solids, 2003, 321(1), p 120–125CrossRefGoogle Scholar
  46. 46.
    M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Ye, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1, p 207–212CrossRefGoogle Scholar
  47. 47.
    M.H. Tsai, K.C. Chang, J.H. Li, J.H. Li, R.C. Tsai, and A.C. Hung, A Second Criterion for Sigma Phase Formation in High-Entropy Alloys, Mater. Res. Lett., 2016, 4, p 1–6CrossRefGoogle Scholar
  48. 48.
    R. Feng, M.C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J.A. Hawk, Y. Zhang, and P.K. Liaw, Design of Light-Weight High-Entropy Alloys, Entropy, 2016, 18, p 333CrossRefGoogle Scholar
  49. 49.
    M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks, Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys, Phys. Rev. X, 2015, 5, p 1–6Google Scholar
  50. 50.
    N. Yurchenko, N. Stepanov, and G. Salishchev, Laves-Phase Formation Criterion for High-Entropy Alloys, Met. Sci. J., 2016, 33, p 17–22Google Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Gang Qin
    • 1
  • Shu Wang
    • 1
  • Ruirun Chen
    • 1
    • 2
  • Huiting Zheng
    • 1
  • Liang Wang
    • 1
  • Yanqing Su
    • 1
  • Jingjie Guo
    • 1
  • Hengzhi Fu
    • 1
  1. 1.National Key Laboratory for Precision Hot Processing of MetalsHarbin Institute of TechnologyHarbinChina
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina

Personalised recommendations