Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 287–295 | Cite as

Microstructure and Corrosion Properties of Laser-Welded SAF 2507 Super Duplex Stainless Steel Joints

  • Kai Qi
  • Ruifeng LiEmail author
  • Guangjin Wang
  • Gangzhi Li
  • Bin Liu
  • Mingfang Wu
Article
  • 45 Downloads

Abstract

SAF 2507 super duplex stainless steel has been welded using laser beam (LB) welding and laser/gas metal arc hybrid (LGH) welding processes. The pitting and intergranular corrosion properties of the welding joints have been tested using electrochemical testing and microstructure observations. The volume fraction of the ferrite phase reaches 70% in the weld zone of the LB welding joint, while the volume fraction of the ferrite phase is 60% for the welding joint of LGH due to the introduction of Ni from welding wire. The pitting corrosion resistance of the welding joint for LB is better than that of LGH. The pitting corrosion is easily conceived in the heat-affected zone (HAZ) because of the formation of Cr2N in the HAZ during welding.

Keywords

intergranular corrosion laser beam welding laser-GMAW hybrid welding pitting corrosion super duplex stainless steel 

Notes

Acknowledgments

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Grant Nos. 51775254 and 51405206) and the China Postdoctoral Science Foundation (Grant No. 2017M611750).

References

  1. 1.
    R. Silverstein and D. Eliezer, Mechanisms of Hydrogen Trapping in Austenitic, Duplex, and Super Martensitic Stainless Steels, J. Alloys Compd., 2017, 720, p 451–459CrossRefGoogle Scholar
  2. 2.
    Z. Cui, L. Wang, H. Ni, W. Hao, C. Man, S. Chen, X. Wang, Z. Liu, and X. Li, Influence of Temperature on the Electrochemical and Passivation Behavior of 2507 Super Duplex Stainless Steel in Simulated Desulfurized Flue Gas Condensates, Corros. Sci., 2017, 118, p 31–48CrossRefGoogle Scholar
  3. 3.
    Z. Zhang, H. Zhao, H. Zhang, H. Jun, and J. Jin, Microstructure Evolution and Pitting Corrosion Behavior of UNS S32750 Super Duplex Stainless Steel Welds After Short-Time Heat Treatment, Corros. Sci., 2017, 121, p 22–31CrossRefGoogle Scholar
  4. 4.
    S.S.M. Tavares, J.M. Pardal, L.D. Lima, I.N. Bastos, A.M. Nascimento, and J.A. de Souza, Characterization of Microstructure, Chemical Composition, Corrosion Resistance and Toughness of a Multipass Weld Joint of Super Duplex Stainless Steel UNS S32750, Mater. Charact., 2007, 58, p 610–616CrossRefGoogle Scholar
  5. 5.
    R. Cervo, P. Ferro, and A. Tiziani, Annealing Temperature Effects on Super Duplex Stainless Steel UNS S32750 Welded Joints. I: Microstructure and Partitioning of Elements, J. Mater. Sci., 2010, 45(2010), p 4369–4377CrossRefGoogle Scholar
  6. 6.
    R. Cervo, P. Ferro, A. Tiziani, and F. Zucchi, Annealing Temperature Effects on Super Duplex Stainless Steel UNS S32750 Welded Joints. II: Pitting Corrosion Resistance Evaluation, J. Mater. Sci., 2010, 45(2010), p 4378–4389CrossRefGoogle Scholar
  7. 7.
    B. Senthilkumar and T. Kannan, Effect of Flux Cored Arc Welding Process Parameters on Bead Geometry in Super Duplex Stainless Steel Claddings, Measurement, 2015, 62, p 127–136CrossRefGoogle Scholar
  8. 8.
    J. Verma and R.V. Taiwade, Effect of Welding Processes and Conditions on the Microstructure, Mechanical Properties and Corrosion Resistance of Duplex Stainless Steel Weldments—A Review, J. Manuf. Process., 2017, 25, p 134–152CrossRefGoogle Scholar
  9. 9.
    F. Mirakhorli, F. Malek Ghaini, and M.J. Torkamany, Development of Weld Metal Microstructures in Pulsed Laser Welding of Duplex Stainless Steel, J. Mater. Eng. Perform., 2012, 21, p 2173–2176CrossRefGoogle Scholar
  10. 10.
    K. Devendranath Ramkumar, D. Mishra, M.K. Vignesh, B. Ganesh Raj, N. Arivazhagan, S. Vitesh Naren, and S. Suresh Kumar, Metallurgical and Mechanical Characterization of Electron Beam Welded Super-Duplex Stainless Steel UNS 32750, J. Manuf. Process., 2014, 16, p 527–534CrossRefGoogle Scholar
  11. 11.
    Y. Yang, Z. Wang, H. Tan, J. Hong, Y. Jiang, L. Jiang, and J. Li, Effect of a Brief Post-Weld Heat Treatment on the Microstructure Evolution and Pitting Corrosion of Laser Beam Welded UNS S31803 Duplex Stainless Steel, Corros. Sci., 2012, 65, p 472–480CrossRefGoogle Scholar
  12. 12.
    B. Ribic, T.A. Palmer, and T. DebRoy, Problems and Issues in Laser-Arc Hybrid Welding, Int. Mater. Rev., 2009, 54, p 223–244CrossRefGoogle Scholar
  13. 13.
    R. Li, Z. Li, Y. Zhu, and L. Rong, A Comparative Study of Laser Beam Welding and Laser-MIG Hybrid Welding of Ti-Al-Zr-Fe Titanium Alloy, Mater. Sci. Eng., A, 2011, 528, p 1138–1142CrossRefGoogle Scholar
  14. 14.
    C. Zheng, L. Cai, Z. Tang, and X. Shen, The Inhibition Effect of the Molybdate on Hydrogen Permeation of 2205 Duplex Stainless Steel, Surf. Coat. Technol., 2016, 287, p 153–159CrossRefGoogle Scholar
  15. 15.
    C. Zheng and G. Yi, Investigating the Influence of Hydrogen on Stress Corrosion Cracking of 2205 Duplex Stainless Steel in Sulfuric Acid by Electrochemical Impedance Spectroscopy, Corros. Rev., 2017, 35, p 23–33CrossRefGoogle Scholar
  16. 16.
    V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, and S. Sundaresan, Effect of Weld Metal Chemistry and Heat Input on the Structure and Properties of Duplex Stainless Steel Welds, Mater. Sci. Eng., A, 2003, 358, p 9–16CrossRefGoogle Scholar
  17. 17.
    V. Muthupandi, P. Bala Srinivasan, S.K. Seshadri, and S. Sundaresan, Effect of Nickel and Nitrogen Addition on the Microstructure and Mechanical Properties of Power Beam Processed Duplex Stainless Steel (UNS 31803) Weld Metals, Mater. Lett., 2005, 59, p 2305–2309CrossRefGoogle Scholar
  18. 18.
    K. Migiakis and G.D. Papadimitriou, Effect of Nitrogen and Nickel on the Microstructure and Mechanical Properties of Plasma Welded UNS S32760 Super-Duplex Stainless Steels, J. Mater. Sci., 2009, 44, p 6372–6383CrossRefGoogle Scholar
  19. 19.
    S.T. Kim, I.S. Lee, J.S. Kim, S.H. Jang, Y.S. Park, K.T. Kim, and Y.S. Kim, Investigation of the Localized Corrosion Associated with Phase Transformation of Tube-to-Tube Sheet Welds of Hyper Duplex Stainless Steel in Acidified Chloride Environments, Corros. Sci., 2012, 64, p 164–173CrossRefGoogle Scholar
  20. 20.
    Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, and X.Q. Lv, Effect of Post-Weld Heat Treatment on Microstructure Evolution and Pitting Corrosion Resistance of Electron Beam-Welded Duplex Stainless Steel, Corros. Sci., 2018, 141, p 30–45CrossRefGoogle Scholar
  21. 21.
    Z.Q. Zhang, H.Y. Jing, L.Y. Xu, Y.D. Han, L. Zhao, and J.L. Zhang, Influence of Microstructure and Elemental Partitioning on Pitting Corrosion Resistance of Duplex Stainless Steel Welding Joints, Appl. Surf. Sci., 2017, 394, p 297–314CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Kai Qi
    • 1
  • Ruifeng Li
    • 1
    Email author
  • Guangjin Wang
    • 1
  • Gangzhi Li
    • 1
  • Bin Liu
    • 1
  • Mingfang Wu
    • 1
  1. 1.School of Materials Science and EngineeringJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations