Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 535–542 | Cite as

Electromagnetic Wave-Absorbing Properties of Steel Slag

  • Yinsuo Dai
  • Jianhua Wu
  • Derong Wang
  • Rui Li
  • Chunhua Lu
  • Zhongzi Xu


This research explores the electromagnetic radiation protection function of steel slag for use as a building material. Scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Mössbauer spectroscopy were used to analyze the chemical composition and mineralogical phase of steel slag powder. Electromagnetic parameters of the samples were analyzed and discussed in detail for the frequency range of 1-18 GHz. We found that steel slag had the electromagnetic wave-absorbing property due to electric components (such as FeO and carbon powder) and magnetic components [such as magnetite (Fe3O4) and hematite (α-Fe2O3)]; electric loss was far greater than magnetic loss. With the increasing milling time, the electric and magnetic properties were increased. The calculated reflectivity curve of steel slag powder epoxide resin–matrix composite at a thickness of 10 mm had several interference peaks, and the absorbing properties increased gradually with increasing frequency. Moreover, the minimum reflectivity was − 21 dB (Decibel) at 13 GHz (Gigahertz). The steel slag powder cement-based composite showed electromagnetic wave-absorbing properties at 10-18 GHz, and the greatest absorption of the 25 mm sample reached 11.5 dB; therefore, the steel slag shows promise as a building material for electromagnetic protection.


chemical composition electromagnetic wave-absorbing properties mineralogical phase steel slag 



The investigation was funded by the Pre-research Fund of PLA University of Science and Technology (20140327) and supported by the Ministry of Housing and Urban-Rural Development of the People’s Republic of China (2008-K4-6). The authors thank Dr. Yongbao Feng for the calculation of reflectivity.


  1. 1.
    G. Bantsis, S. Mavridou, and C. Sikalidis, Comparison of Low Cost Shielding-Absorbing Cement Paste Building Materials in X-Band Frequency Range Using a Variety of Wastes, Ceram. Int., 2012, 38, p 3688–3692Google Scholar
  2. 2.
    P.J. Bora, M. Porwal, K.J. Vinoy, J. Kishore, P.C. Ramamurthy, and G. Madras, Industrial Waste fly Ash Cenosphere Composites Based Broad Band Microwave Absorber, Compos. Part B, 2018, 134, p 151–163CrossRefGoogle Scholar
  3. 3.
    D. Chaira, B.K. Mishra, and S. Sangal, Magnetic Properties of Cementite Powder Produced by Reaction Milling, J. Alloys Compd., 2009, 474, p 396–400CrossRefGoogle Scholar
  4. 4.
    Y.S. Dai, C.H. Lu, Y.R. Ni, and Z.Z. Xu, Radar-Wave Absorbing Property of Cement-Based Composite Doped with Steel Slag, J. Chin. Ceram. Soc. China, 2009, 37, p 147–151Google Scholar
  5. 5.
    Y.S. Dai, J.H. Wu, D.R. Wang, C.H. Lu, and Z.Z. Xu, Effect of Mineralogical Phase and Chemical Composition of Fly Ash on Electromagnetic Wave-Absorbing Properties, Mater. Trans., 2018, 59(6), p 876–882CrossRefGoogle Scholar
  6. 6.
    Y.N. Dhoble and S. Ahmed, Review on the Innovative Uses of Steel Slag for Waste Minimization, J. Mater. Cycles Waste Manag., 2018, 20, p 1373–1382CrossRefGoogle Scholar
  7. 7.
    GJB2038A-2011, The measurement methods for reflectivity of radar absorbing material. CN-GJB-Z (2011)Google Scholar
  8. 8.
    G.H. Hou, W.H. Li, W. Guo, J.H. Chen, J.H. Luo, and J.G. Wang, Microstructure and Mineral Phase of Converter Slag, J. Chin. Ceram. Soc. China, 2008, 36, p 436–443Google Scholar
  9. 9.
    D. Jancik, M. Mashlan, R. Zboril, and J. Adetunji, A New Fast Type of Mössbauer Spectrometer for the Rapid Determination of Iron-Bearing Minerals Used in the Paint Industry, Czechoslov. J. Phys., 2005, 55, p 803–811CrossRefGoogle Scholar
  10. 10.
    L. Kriskova, Y. Pontikes, L. Pandelaers, O. Cizer, P.T. Jones, K. Van Balen, and B. Blanpain, Effect of High Cooling Rates on the Mineralogy and Hydraulic Properties of Stainless Steel Slags, Metall. Mater. Trans. B, 2013, 44, p 1173–1184CrossRefGoogle Scholar
  11. 11.
    Y.P. Lan, Q.C. Liu, F. Meng, D.L. Niu, and H. Zhao, Optimization of Magnetic Separation Process for Iron Recovery from Steel Slag, J. Iron Steel Res. Int., 2017, 21, p 165–170CrossRefGoogle Scholar
  12. 12.
    Y. Lin, J.J. Dai, H.B. Yang, L. Wang, and F. Wang, Graphene Multilayered Sheets Assembled by Porous Bi2Fe4O9 Microspheres and the Excellent Electromagnetic Wave Absorption Properties, Chem. Eng. J., 2018, 334, p 1740–1748CrossRefGoogle Scholar
  13. 13.
    Y. Lin, J.J. Dong, H.W. Zong, B. Wen, and H.B. Yang, Synthesis, Characterization, and Electromagnetic Wave Absorption Properties of Composites of Reduced Graphene Oxide with Porous LiFe5O8 Microspheres, ACS Sustain. Chem. Eng., 2018, 17, p 10011–10020CrossRefGoogle Scholar
  14. 14.
    M. Maes, E. Gruyaert, and N. De Belie, Resistance of Concrete with Blast-Furnace Slag Against Chlorides, Investigated by Comparing Chloride Profiles After Migration and Diffusion, Mater. Struct., 2013, 46, p 89–103CrossRefGoogle Scholar
  15. 15.
    C. Meyer, M.G. Wichmann, and T.S. Spengler, Management of Recycling Operations for Iron and Steel Making Slags, J. Bus. Econ., 2016, 86, p 773–808CrossRefGoogle Scholar
  16. 16.
    P.H. Miao, W. Liu, and S.Y. Wang, Improving Microwave Absorption Efficiency of Asphalt Mixture by Enriching Fe3O4 on the Surface of Steel Slag Particles, Mater. Struct., 2017, 50, p 134CrossRefGoogle Scholar
  17. 17.
    D. Micheli, R. Pastore, A. Vricella, R.B. Morles, M. Marchetti, A. Delfini, F. Moglie, and V. Mariani Primiani, Electromagnetic Characterization and Shielding Effectiveness of Concrete Composite Reinforced with Carb on Nanotubes in the Mobile Phones Frequency Band, Mater. Sci. Eng. B, 2014, 188, p 119–129CrossRefGoogle Scholar
  18. 18.
    D. Micheli, P. Gianola, G. Bertin, A. Delfini, and R. Pastore, Electromagnetic Shielding of Building Walls: From Roman times to the present age, IEEE Antennas Propag. Mag., 2016, 58(5), p 20–31CrossRefGoogle Scholar
  19. 19.
    J.F. Moulder, W.F. Stickle, and P.E. Sobol, Handbook of X-Ray Photoelectron Spectroscopy, Perkin Elmer Corp., Physical Electronics Inc, USA, Eden Prairie, 1995Google Scholar
  20. 20.
    I.W. Nam and H.K. Lee, Synergistic Effect of MWNT/Fly Ash Incorporation on the EMI, Shielding/Absorbing Characteristics of Cementitious Materials, Const. Build. Mater., 2016, 115, p 651–661CrossRefGoogle Scholar
  21. 21.
    M. Oztur, O. Akgol, U.K. Sevim, M. Karaaslan, M. Demirci, and E. Unal, Experimental Work on Mechanical, Electromagnetic and Microwave Shielding Effectiveness Properties of Mortar Containing Electric Arc Furnace Slag, Const. Build. Mater., 2018, 165(20), p 58–63CrossRefGoogle Scholar
  22. 22.
    J.-H. Park and P.C.-H. Rhee, Ionic Properties of Oxygen in Slag, J. Non-Cryst. Solid, 2001, 282, p 7–14CrossRefGoogle Scholar
  23. 23.
    Z.J. Wang, T. Zhang, and L. Zhou, Investigation on Electromagnetic and Microwave Absorption Properties of Copper Slag-Filled Cement Mortar, Cement Concr. Compos., 2016, 74, p 174–181CrossRefGoogle Scholar
  24. 24.
    H.W. Zhang and X. Hong, An Overview for the Utilization of Wastes from Stainless Steel Industries, Resour. Conserv. Recycl., 2011, 55, p 745–754CrossRefGoogle Scholar
  25. 25.
    T.D. Zhou, Z.Y. Wang, J.K. Tang, and H.P. Lu, Structure and Magnetic Properties of Fe-Based Powders Prepared by Mechanical Alloying, Acta Metall. Sin. (Eng1.Lett.), 2010, 23, p 351–356Google Scholar
  26. 26.
    K.V. Zipare, S.S. Bandgar, and G.S. Shahane, Effect of Dy-Substitution on Structural and Magnetic Properties of Mn-Zn ferrite Nanoparticles, J. Rare Earths, 2018, 36, p 86–94CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yinsuo Dai
    • 1
  • Jianhua Wu
    • 1
  • Derong Wang
    • 1
  • Rui Li
    • 1
  • Chunhua Lu
    • 2
  • Zhongzi Xu
    • 2
  1. 1.National Defense Engineering CollegeArmy Engineering University of PLANanjingChina
  2. 2.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations