Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 543–548 | Cite as

Effects of Torsional Deformation on the Mechanical Properties and Microstructures of a Commercial Pure Copper

  • Ji Gu
  • Song NiEmail author
  • Min Song


The effects of torsional deformation on the mechanical properties and microstructural evolution of pure copper rods with cylindrical shape have been investigated in this study by twisting the rods by different numbers of revolution. The torsional deformation can introduce gradient hardness along the radial direction due to the formation of gradient grains and dislocation substructures along the radial direction. Tensile testing results indicated that the torsional deformation can significantly enhance the strength of pure copper with consuming the ductility. Due to the large grain size and relative high SFE of pure copper in this study, only gradient grain size and dislocation substructures formed along the radial direction after torsional deformation.


copper gradient structure mechanical properties torsional deformation 



The financial supports from the National Natural Science Foundation of China (51771229) and Hunan provincial Innovation Foundation for Postgraduate (CX2017B046) are appreciated.


  1. 1.
    R.O. Ritchie, The Conflicts Between Strength and Toughness, Nat. Mater., 2011, 10, p 817–822CrossRefGoogle Scholar
  2. 2.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Fundamentals of Superior Properties in Bulk NanoSPD Materials, Mare. Res. Lett., 2016, 4, p 1–21CrossRefGoogle Scholar
  3. 3.
    L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu, Ultrahigh Strength and High Electrical Conductivity in Copper, Science, 2004, 304, p 422–426CrossRefGoogle Scholar
  4. 4.
    X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu, Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility, Proc. Natl. Acad. Sci. USA, 2015, 112, p 14501–14505CrossRefGoogle Scholar
  5. 5.
    Y.M. Wang, M.W. Chen, F.H. Zhou, and E. Ma, High Tensile Ductility in a Nanostructureed Metal, Nature, 2002, 419, p 912–915CrossRefGoogle Scholar
  6. 6.
    X.X. Huang, N. Hansen, and N. Tsuji, Hardening by Annealing and Softening by Deformation in Nanostructureed Metals, Science, 2006, 312, p 249–251CrossRefGoogle Scholar
  7. 7.
    Y. Cao, S. Ni, X.Z. Liao, M. Song, and Y.T. Zhu, Structural Evolutions of Metallic Materials Processed by Severe Plastic Deformation, Mater. Sci. Eng. R, 2018, 133, p 1–59CrossRefGoogle Scholar
  8. 8.
    T.L. Huang, L.F. Shuai, A. Wakeel, G.L. Wu, N. Hansen, and X.X. Huang, Strengthening Mechanisms and Hall–Petch Stress of Ultrafine Grained Al-0.3%Cu, Acta Mater., 2018, 156, p 369–378CrossRefGoogle Scholar
  9. 9.
    C. Zhao, F.G. Li, J.H. Li, X.K. Ma, Q. Wan, and T.T. Tong, Influence of Deformation Stress Triaxiality on Microstructure and Microhardness of Pure Copper Processed by Simultaneous Torsion and Tension, J. Mater. Eng. Perform., 2017, 26, p 4104–4111CrossRefGoogle Scholar
  10. 10.
    X.H. Yang, J.H. Yi, S. Ni, Y. Du, and M. Song, Microstructural Evolution and Structure-Hardness Relationship in an Al-4wt.%Mg Alloy Processed by High-Pressure Torsion, J. Mater. Eng. Perform., 2016, 25, p 1909–1915CrossRefGoogle Scholar
  11. 11.
    T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper, Science, 2011, 331, p 1587–1590CrossRefGoogle Scholar
  12. 12.
    Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, and H.J. Gao, Evading the Strength-Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 3580CrossRefGoogle Scholar
  13. 13.
    X.L. Wu, M.X. Yang, F.P. Yuan, L. Chen, and Y.T. Zhu, Combining Gradient Structure and TRIP Effect to Produce Austenite Stainless Steel with High Strength and Ductility, Acta Mater., 2016, 112, p 337–346CrossRefGoogle Scholar
  14. 14.
    K. Lu and J. Lu, Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment, Mater. Sci. Eng. A, 2004, 375–377, p 38–45CrossRefGoogle Scholar
  15. 15.
    K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu, Plastic Strain-Induced Grain Refinement at the Nanometer Scale in Copper, Acta Mater., 2006, 54, p 5281–5291CrossRefGoogle Scholar
  16. 16.
    W.L. Li, N.R. Tao, and K. Lu, Fabrication of a Gradient Nano-Micro-Structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment, Scr. Mater., 2008, 59, p 546–549CrossRefGoogle Scholar
  17. 17.
    N. Guo, B. Song, H.B. Yu, R.L. Xin, B.S. Wang, and T.T. Liu, Enhancing tenSile Strength of Cu by Introducing Gradient Microstructures via a Simple Torsion Deformation, Mater. Des., 2016, 90, p 545–550CrossRefGoogle Scholar
  18. 18.
    J. Gu, L.X. Zhang, Y.H. Tang, M. Song, S. Ni, X.H. An, Y. Du, Z. Li, and X.Z. Liao, Improving the Strength and Retaining the Ductility of Microstructural Graded Coarse-Grained Materials with Low Stacking Fault Energy, Mater. Des., 2018, 160, p 21–33CrossRefGoogle Scholar
  19. 19.
    J. Gu, L.X. Zhang, S. Ni, and M. Song, Effects of Grain Size on the Microstructures and Mechanical Properties of 304 Austenitic Steel Processed by Torsional Deformation, Micron, 2018, 105, p 93–97CrossRefGoogle Scholar
  20. 20.
    H.T. Wang, N.R. Tao, and K. Lu, Architectured Surface Layer with a Gradient Nanotwinned Structure in a Fe-Mn Austenitic Steel, Scr. Mater., 2013, 68, p 22–27CrossRefGoogle Scholar
  21. 21.
    T. Niendorf, C. Lotze, D. Canadinc, A. Frehn, and H.J. Maier, The Role of Monotonic Pre-deformation on the Fatigue Performance of a High-Manganese Austenitic TWIP Steel, Mater. Sci. Eng. A, 2009, 499, p 518–524CrossRefGoogle Scholar
  22. 22.
    J. Gu, M. Song, S. Ni, X.Z. Liao, and S.F. Guo, Improving the Plasticity of Bulk Metallic Glasses via Pre-compression Below the Yield Stress, Mater. Sci. Eng. A, 2014, 602, p 68–76CrossRefGoogle Scholar
  23. 23.
    Y. Xin, M. Wang, Z. Zeng, G. Huang, and Q. Liu, Tailing the Texture of Magnesium Alloy by Twinning Deformation to Improve the Rolling Capability, Scr. Mater., 2011, 64, p 986–989CrossRefGoogle Scholar
  24. 24.
    X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary Strain Hardening by Gradient Structure, Proc. Natl. Acad. Sci. USA, 2014, 111, p 7197–7201CrossRefGoogle Scholar
  25. 25.
    H.N. Kou, J. Lu, and Y. Li, High-Strength and High-Ductility Nanostructured and Amorphous Metallic Materials, Adv. Mater., 2014, 26, p 5518–5524CrossRefGoogle Scholar
  26. 26.
    K. Edalati and Z. Horita, Significance of Homologous Temperature in Softening Behavior and Grain Size of Pure Metals Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2011, 528, p 7514–7523CrossRefGoogle Scholar
  27. 27.
    K. Edalati, T. Fujioka, and Z. Horita, Microstructure and Mechanical Properties of Pure Cu Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2008, 497, p 168–173CrossRefGoogle Scholar
  28. 28.
    X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Evolution of Microstructural Homogeneity in Copper Processed by High-Pressure Torsion, Scr. Mater., 2010, 63, p 560–563CrossRefGoogle Scholar
  29. 29.
    J. Moering, X.L. Ma, J. Malkin, M.X. Yang, Y.T. Zhu, and S. Mathaudhu, Synergetic Strengthening far Beyond Rule of Mixtures in Gradient Structured Aluminum Rod, Scr. Mater., 2016, 122, p 106–109CrossRefGoogle Scholar
  30. 30.
    M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The Onset of Twinning in Metals: A Constitutive Description, Acta Mater., 2001, 49, p 4025–4039CrossRefGoogle Scholar
  31. 31.
    J. Gu, L.X. Zhang, S. Ni, and M. Song, Formation of Large Scaled Zero-Strain Deformation Twins in the Coarse-Grained Copper, Scr. Mater., 2016, 125, p 49–53CrossRefGoogle Scholar
  32. 32.
    J. Gu, Y.H. Tang, S. Ni, and M. Song, Effect of Stacking Fault Energy on the Split Length of 9R Phase in Coarse-Grained Cu-Al Alloys, Mater. Charact., 2018, 142, p 9–14CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, N.R. Tao, and K. Lu, Mechanical Properties and Rolling Behaviors of Nanograined Copper with Embedded Nano-Twin Bundles, Acta Mater., 2008, 56, p 2429–2440CrossRefGoogle Scholar
  34. 34.
    K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345, p 1455–1456CrossRefGoogle Scholar
  35. 35.
    K. Lu, Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures, Nat. Rev. Mater., 2016, 1, p 1–13CrossRefGoogle Scholar
  36. 36.
    J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1982Google Scholar
  37. 37.
    J.S. Li, W.D. Gao, Y. Cao, Z.W. Huang, B. Gao, Q.Z. Mao, and Y.S. Li, Microstructures and Mechanical Properties of a Gradient Nanostructured 316L Stainless Steel Processed by Rotationally Accelerated Shot Peening, Adv. Eng. Mater., 2018, 20, p 1800402CrossRefGoogle Scholar
  38. 38.
    J.S. Li, Y. Cao, B. Gao, Y.S. Li, and Y.T. Zhu, Superior Strength and Ductility of 316L Stainless Steel with Heterogeneous Lamella Structure, J. Mater. Sci., 2018, 53, p 10442–10456CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations