Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 586–592 | Cite as

Effect of Cold Deformation and Heat Treatment on the Microstructure and Mechanical Behavior of High Entropy Alloy CuCrFeNi2Al0.5

  • Jinhong PiEmail author
  • Changfu Yu
  • Chao Sun
  • Hailong Du
  • Yinlong Fan
  • BaoSen Zhang
  • Shaofeng Yang
Article
  • 66 Downloads

Abstract

CuCrFeNi2Al0.5, a high entropy alloy (HEA) with a single FCC phase, was deformed at room temperature and then heat treated. The small particles precipitated from the deformed FCC solid solution matrix after heating at 700 °C, softening the solid solution matrix. This outcome confirms that the microstructure of HEAs can be controlled by heat treatment in addition to controlling the chemical composition and the rate of cooling from liquid alloys. The hardness of the samples increased due to precipitation hardening, and the specimen heated at 700 °C with 10% predeformation had the highest hardness. As the predeformation increases, the precipitates tend to interweave in the network morphology. Meanwhile, grains in all specimens became more severely coarse after heat treatment at 1100 °C. Predeformation followed by annealing can obviously slow down the creep rate, indicating that annealing at an appropriate temperature can improve the mechanical properties of deformed HEA.

Keywords

cold deformation creep heat treatment high entropy alloy nanoindentation 

Notes

Acknowledgment

The authors would like to thank for the financial support by National Natural Science Foundation of China (51601089, 51671104, 51775259) and Innovation Training Program for College Students in Jiangsu Province (TB201702018). The authors thank the experimental and technical support by the Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu Province.

References

  1. 1.
    R.S. Ganji, P.S. Karthik, K.B.S. Rao et al., Strengthening Mechanisms in Equiatomic Ultrafine Grained AlCoCrCuFeNi High-Entropy Alloy Studied by Micro- and Nanoindentation Methods, Acta Mater., 2017, 125, p 58–68CrossRefGoogle Scholar
  2. 2.
    Y. Yu, J. Wang, J.S. Li et al., Characterization of BCC Phases in AlCoCrFeNiTix High Entropy Alloys, Mater. Lett., 2017, 138, p 78–80CrossRefGoogle Scholar
  3. 3.
    S.W. Sohn, Y.H. Liu, J.B. Liu et al., Noble Metal High Entropy Alloys, Scripta Mater., 2017, 126, p 29–32CrossRefGoogle Scholar
  4. 4.
    Y. Ma, Y.H. Feng, T.T. Debela et al., Nanoindentation Study on the Creep Characteristics of High-Entropy Alloy Films: fcc Versus bcc Structures, Int. J. Refract. Met. Hard Mater., 2016, 54, p 395–400CrossRefGoogle Scholar
  5. 5.
    G. Muthupandi, K.R. Lim, Y.S. Na et al., Pile-Up and Sink-In Nanoindentation Behaviors in AlCoCrFeNi Multi-phase High Entropy Alloy, Mater. Sci. Eng. A, 2017, 696, p 146–154CrossRefGoogle Scholar
  6. 6.
    J.X. Hou, M. Zhang, S.G. Ma et al., Strengthening in Al0.25CoCrFeNi High-Entropy Alloys by Cold Rolling, Mater. Sci. Eng. A, 2017, 707, p 593–601CrossRefGoogle Scholar
  7. 7.
    I.S. Wani, T. Bhattacharjee, S. Sheikh et al., Cold-Rolling and Recrystallization Textures of a Nano-Lamellar AlCoCrFeNi2.1 Eutectic High Entropy Alloy, Intermetallics, 2017, 84, p 42–51CrossRefGoogle Scholar
  8. 8.
    Y.X. Ye, Z.P. Lu, and T.G. Nieh, Dislocation Nucleation During Nanoindentation in a Body-Centered Cubic TiZrHfNb High-Entropy Alloy, Scripta Mater., 2017, 130, p 64–68CrossRefGoogle Scholar
  9. 9.
    M. Vaidya, K.G. Pradeep, B.S. Murty et al., Radioactive Isotopes Reveal a Non Sluggish Kinetics of Grain Boundary Diffusion in High Entropy Alloys, Sci. Rep., 2017, 7, p 12293.  https://doi.org/10.1038/s41598-017-12551-9 CrossRefGoogle Scholar
  10. 10.
    S.G. Ma, J.W. Qiao, Z.H. Wang et al., Microstructural Features and Tensile Behaviors of the Al0.5CrCuFeNi2 High-Entropy Alloys by Cold Rolling and Subsequent Annealing, Mater. Des., 2015, 88, p 1057–1062CrossRefGoogle Scholar
  11. 11.
    C. Ng, S. Guo, J.H. Luan et al., Phase Stability and Tensile Properties of Co-Free Al0.5CrCuFeNi2 High-Entropy Alloys, J. Alloys Compd., 2014, 584, p 530–537CrossRefGoogle Scholar
  12. 12.
    Z. Wang, M.C. Gao, S.G. Ma et al., Effect of Cold Rolling on the Microstructure and Mechanical Properties of Al0.25CoCrFe1.25Ni1.25 High-Entropy Alloy, Mater. Sci. Eng. A, 2015, 645, p 163–169CrossRefGoogle Scholar
  13. 13.
    J.G. Moon, Y.S. Qi, E. Tabachnikova et al., Deformation-Induced Phase Transformation of Co20Cr26Fe20Mn20Ni14 High-Entropy Alloy During High-Pressure Torsion at 77 K, Mater. Lett., 2017, 202, p 86–88CrossRefGoogle Scholar
  14. 14.
    D.J.M. King, S.C. Middleburgh, A.G. McGregor et al., Predicting the Formation and Stability of Single Phase High-Entropy Alloys, Acta Mater., 2016, 104, p 172–179CrossRefGoogle Scholar
  15. 15.
    H.Y. Diao, R. Feng, K.A. Dahmen et al., Fundamental Deformation Behavior in High-Entropy Alloys: An Overview, Curr. Opin. Solid State Mater. Sci., 2017, 21, p 252–266CrossRefGoogle Scholar
  16. 16.
    W.H. Liu, T. Yang, and C.T. Liu, Precipitation Hardening in CoCrFeNi-Based High Entropy Alloys, Mater. Chem. Phys., 2018, 210, p 2–11CrossRefGoogle Scholar
  17. 17.
    B. Gwalani, V. Soni, M. Lee et al., Optimizing the Coupled Effects of Hall-Petch and Precipitation Strengthening in a Al0.3CoCrFeNi High Entropy Alloy, Mater. Des., 2017, 121, p 254–260CrossRefGoogle Scholar
  18. 18.
    C. Anthony, Fischer–Cripps, Nanoindentation, 3rd ed., Springer, New York, 2011Google Scholar
  19. 19.
    M.R. VanLandingham, Review of Instrumented Indentation, J. Res. Natl. Inst. Stand. Technol., 2003, 108(4), p 249–265CrossRefGoogle Scholar
  20. 20.
    G. Dehm, B.N. Jaya, R. Raghavan et al., Overview on Micro- and Nanomechanical Testing: New Insights in Interface Plasticity and Fracture at Small Length Scales, Acta Mater., 2018, 142, p 248–282CrossRefGoogle Scholar
  21. 21.
    D. Wu, J.S.C. Jang, and T.G. Nieh, Elastic and Plastic Deformations in a High Entropy Alloy Investigated Using a Nanoindentation Method, Intermetallics, 2016, 68, p 18–127CrossRefGoogle Scholar
  22. 22.
    L.P. Yu, S.Y. Chen, J.L. Ren et al., Plasticity Performance of Al0.5CoCrCuFeNi High-Entropy Alloys Under Nanoindentation, J. Iron. Steel Res. Int., 2017, 24, p 390–396CrossRefGoogle Scholar
  23. 23.
    T.H. Zhang, Micro/Nanomechanical Testing Technology, 1st ed., Science Press, Peking, 2013Google Scholar
  24. 24.
    Y. Zhang, T.T. Zuo, Z. Tang et al., Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 13–23CrossRefGoogle Scholar
  25. 25.
    E.T. George, Steel Heat Treatment Handbook, 2nd ed., Taylor & Francis Group, Boca Raton, 2006Google Scholar
  26. 26.
    J.H. Pi, Z.Z. Wang, X.C. He et al., Nanoindentation Mechanical Properties of Glassy Cu29Zr32Ti15Al5Ni19, J. Alloys Compd., 2016, 657, p 726–732CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Jinhong Pi
    • 1
    • 2
    Email author
  • Changfu Yu
    • 1
  • Chao Sun
    • 1
  • Hailong Du
    • 1
  • Yinlong Fan
    • 1
  • BaoSen Zhang
    • 1
    • 2
  • Shaofeng Yang
    • 1
    • 2
  1. 1.School of Materials EngineeringNanjing Institute of TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjingChina

Personalised recommendations