Creep Behavior of Commercially Pure Titanium TA2 After Supersonic Fine Particles Bombardment

  • Liling Ge
  • Zhanwei YuanEmail author
  • Zhenhua Han


In this study, the effect of supersonic fine particles bombardment (SFPB) on the creep behavior of commercially pure titanium TA2 was investigated. Microstructural observations with x-ray diffraction and a transmission electron microscope indicated that the grain size of the TA2 surface layer was refined to nanometer scale in the topmost surface layer after SFPB treatment. Indentation creep tests showed that the SFPB-treated sample had a lower maximum depth and higher hardness than the original sample at the same load, indicating an enhancement of the surface strength with SFPB. With lower creep displacements, the creep resistance was also improved after SFPB treatment. The maximum creep rate under different loading conditions showed obvious loading time and load dependencies. The maximum creep rate of the SFPB-treated sample was lower than the original sample for all test conditions, and the maximum creep strain rate of the SFPB-treated sample was similar to that of the original sample. The indentation stress of the SFPB-treated sample was higher than the original sample, while the creep stress exponent of the original sample was slightly higher than for the SFPB-treated sample, with no obvious variation tendency with different loading times or loads.


commercially pure titanium (TA2) creep behavior indentation test SFPB treatment 



This work was in part supported by Industry research project of Shaanxi Province (Grant No. 2009K06-22) and Special project of Xi’an University of Technology (Grant No. 2014 TS002). The authors are very grateful for the support received from the National Natural Science Foundation of China (No. 51401160), project of Shaanxi Province key industry innovation chain (No. 2016KTZDGY09-06-02) and Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (No. 310831161023).


  1. 1.
    L. Zhu, Y. Guan, Y. Wang, Z. Xie, and J. Lin, Influence of Process Parameters of Ultrasonic Shot Peening on Surface Nanocrystallization and Hardness of Pure Titanium, Int. J. Adv. Manuf. Technol., 2016, 89(5-8), p 1–18CrossRefGoogle Scholar
  2. 2.
    S. Dai, Y. Zhu, and Z. Huang, Microstructure and Tensile Behaviour of Pure Titanium Produced After High-Energy Shot Peening, Mater. Sci. Technol., 2016, 32, p 1323–1329CrossRefGoogle Scholar
  3. 3.
    O. Unal, A.C. Karaoglanli, R. Varol, and A. Kobayashi, Microstructure Evolution and Mechanical Behavior of Severe Shot Peened Commercially Pure Titanium, Vacuum, 2014, 110, p 202–206CrossRefGoogle Scholar
  4. 4.
    Y.G. Liu, M.Q. Li, and H.J. Liu, Nanostructure and Surface Roughness in the Processed Surface Layer of Ti-6Al-4V via Shot Peening, Mater. Charact., 2017, 123, p 83–90CrossRefGoogle Scholar
  5. 5.
    B.A. De-Ma, M.A. Shi-Ning, L.I. Chang-Qing, F.J. Meng, and T.Y. Xiong, Surface Nanocrystallization of 45 Steel Induced by Supersonic Fine Particles Bombarding, Mater. Sci. Technol., 2007, 15(3), p 342–346Google Scholar
  6. 6.
    J. Yang, Y. Zhang, L. Ge, J. Chen, and F. Xing, Surface Strengthening of 2A14 Aluminum Alloy Based on Surface Nanocrystallization, Heat Treat. Metals, 2017, 42(3), p 124–128Google Scholar
  7. 7.
    L. Kong, Y. Lao, T. Xiong, and T. Li, Nanocrystalline Surface Layer on AISI, 52100 Steel Induced by Supersonic Fine Particles Bombarding, J. Therm. Spray Technol., 2013, 22(6), p 1007–1013CrossRefGoogle Scholar
  8. 8.
    L. Ge, N. Tian, Z. Lu, and C. You, Influence of the Surface Nanocrystallization on the Gas Nitriding of Ti-6Al-4V Alloy, Appl. Surf. Sci., 2013, 286(4), p 412–416CrossRefGoogle Scholar
  9. 9.
    S. Dai, Y. Zhu, and Z. Huang, Microstructure Evolution and Strengthening Mechanisms of Pure Titanium with Nano-structured Surface Obtained by High Energy Shot Peening, Vacuum, 2016, 125, p 215–221CrossRefGoogle Scholar
  10. 10.
    Y.G. Liu, H.M. Li, and M.Q. Li, Characterization of Surface Layer in TC17 Alloy Treated by Air Blast Shot Peening, Mater. Des., 2015, 65(65), p 120–126CrossRefGoogle Scholar
  11. 11.
    R.A. Waikar, Y.B. Guo, J.F. Liu, and Z.Y. Liu, Electrochemical Corrosion Behavior of Surface Nanocrystallized Steel and Aluminum Alloys by Air Blast Shot Peening (ABSP), in International Symposium Flexible Automation (2016), p. 359–365Google Scholar
  12. 12.
    Y. Todaka, M. Umemoto, Y. Watanabe, and K. Tsuchiya, Formation of Nanocrystalline Structure in Steels by Air Blast Shot Peening and Particle Impact Processing, Mater. Sci. Forum, 2004, 449–452, p 1149–1152CrossRefGoogle Scholar
  13. 13.
    C. Zhao, P. Cao, W. Ji, P. Han, J. Zhang, F. Zhang, Y. Jiang, and X. Zhang, Hierarchical Titanium Surface Textures Affect Osteoblastic Functions, J. Biomed. Mater. Res. Part A, 2011, 99A(4), p 666–675CrossRefGoogle Scholar
  14. 14.
    C. Zhao, W. Ji, P. Han, J. Zhang, Y. Jiang, and X. Zhang, In Vitro and In Vivo Mineralization and Osseointegration of Nanostructured Ti6Al4V, J. Nanopart. Res., 2011, 13(2), p 645–654CrossRefGoogle Scholar
  15. 15.
    K. Lu and J. Lu, Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept Behind a New Approach, J. Mater. Sci. Technol., 1999, 15(3), p 193–197Google Scholar
  16. 16.
    G. Liu, J. Lu, and K. Lu, Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening, Mater. Sci. Eng. A, 2000, 286(1), p 91–95CrossRefGoogle Scholar
  17. 17.
    K.S. Raja, S.A. Namjoshi, and M. Misra, Improved Corrosion Resistance of Ni-22Cr-13Mo-4W Alloy by Surface Nanocrystallization, Mater. Lett., 2005, 59(5), p 570–574CrossRefGoogle Scholar
  18. 18.
    X.Y. Mao, D.Y. Li, F. Fang, R.S. Tan, and J.Q. Jiang, Application of a Simple Surface Nanocrystallization Process to a Cu-30Ni Alloy for Enhanced Resistances to Wear and Corrosive Wear, Wear, 2011, 271(9), p 1224–1230CrossRefGoogle Scholar
  19. 19.
    B. Zhao, Y.U. Tianyu, W. Ding, and L.I. Xianying, Effects of Pore Structure and Distribution on Strength of Porous Cu-Sn-Ti Alumina Composites, Chin. J. Aeronaut., 2017, 30(6), p 2004–2015CrossRefGoogle Scholar
  20. 20.
    X. Xi, W. Ding, Y. Fu, and J. Xu, Grindability Evaluation and Tool Wear During Grinding of Ti 2 AlNb Intermetallics, Int. J. Adv. Manuf. Technol., 2017, 94(9), p 1–10Google Scholar
  21. 21.
    C. Liu, W. Ding, T. Yu, and C. Yang, Materials Removal Mechanism in High-Speed Grinding of Particulate Reinforced Titanium Matrix Composites, Precis. Eng., 2017, 51, p 68–77CrossRefGoogle Scholar
  22. 22.
    Z. Li, W. Ding, C. Liu, and H. Su, Grinding Performance and Surface Integrity of Particulate-Reinforced Titanium Matrix Composites in Creep-Feed Grinding, Int. J. Adv. Manuf. Technol., 2017, 94(2), p 1–12Google Scholar
  23. 23.
    D.R. Luster, W.W. Wentz, and D.W. Kaufmann, Creep Properties of Titanium, Mater. Methods, 1953, 37, p 100–103Google Scholar
  24. 24.
    Y. Xiang, W. Zhu, C.J. Liu, F.Z. Xuan, Y.N. Wang, and W.C. Kuang, Creep Degradation Characterization of Titanium Alloy Using Nonlinear Ultrasonic Technique, Ndt & E Int., 2015, 72, p 41–49CrossRefGoogle Scholar
  25. 25.
    Z. Liu, J. Shao, S. Xie, and J. Secq, Gas Permeability Evolution of Clayey Rocks in Process of Compressive Creep Test, Mater. Lett., 2015, 139, p 422–425CrossRefGoogle Scholar
  26. 26.
    J.D. French, J. Zhao, M.P. Harmer, H.M. Chan, and G.A. Miller, Creep of Duplex Microstructure, J. Am. Ceram. Soc., 2010, 77(11), p 2857–2865CrossRefGoogle Scholar
  27. 27.
    A.C.F. Cocks and M.F. Ashby, On Creep Fracture by Void Growth, Prog. Mater. Sci., 1982, 27(3), p 189–244CrossRefGoogle Scholar
  28. 28.
    J. Xie, S. Tian, X. Zhou, X. Yu, and W. Wang, Influence of Heat Treatment Regimes on Microstructure and Creep Properties of FGH95 Nickel Base Superalloy, Mater. Sci. Eng. A, 2012, 538(2), p 306–314CrossRefGoogle Scholar
  29. 29.
    J. Pešička, R. Kužel, A. Dronhofer, and G. Eggeler, The Evolution of Dislocation Density During Heat Treatment and Creep of Tempered Martensite Ferritic Steels, Acta Mater., 2003, 51(16), p 4847–4862CrossRefGoogle Scholar
  30. 30.
    J. Alkorta, On the Elastic Effects in Power-Law Indentation Creep with Sharp Conical Indenters, J. Mater. Res., 2008, 23(1), p 182–188CrossRefGoogle Scholar
  31. 31.
    L. Wang, L. Xie, L.C. Zhang, L. Chen, Z. Ding, Y. Lv, W. Zhang, W. Lu, and D. Zhang, Microstructure Evolution and Superelasticity of Layer-Like NiTiNb Porous Metal Prepared by Eutectic Reaction, Acta Mater., 2018, 143, p 214–226CrossRefGoogle Scholar
  32. 32.
    S. Ehtemam-Haghighi, G. Cao, and L.-C. Zhang, Nanoindentation Study of Mechanical Properties of Ti Based Alloys with Fe and Ta Additions, J. Alloys Compd., 2017, 692, p 892–897CrossRefGoogle Scholar
  33. 33.
    W.C. Oliver and G.M. Pharr, Nanoindentation in Materials Research: Past, Present, and Future, MRS Bull., 2010, 35(11), p 897–907CrossRefGoogle Scholar
  34. 34.
    W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRefGoogle Scholar
  35. 35.
    L. Wang, L. Xie, Y. Lv, L.C. Zhang, L. Chen, Q. Meng, J. Qu, D. Zhang, and W. Lu, Microstructure Evolution and Superelastic Behavior in Ti-35Nb-2Ta-3Zr Alloy Processed by Friction Stir Processing, Acta Mater., 2017, 131, p 499–510CrossRefGoogle Scholar
  36. 36.
    Y.G. Liu, M.Q. Li, and H.J. Liu, Surface Nanocrystallization and Gradient Structure Developed in the Bulk TC4 Alloy Processed by Shot Peening, J. Alloys Compd., 2016, 685, p 186–193CrossRefGoogle Scholar
  37. 37.
    C.C. Tasan, J.P.M. Hoefnagels, and M.G.D. Geers, Identification of the Continuum Damage Parameter: An Experimental Challenge in Modeling Damage Evolution, Acta Mater., 2012, 60(8), p 3581–3589CrossRefGoogle Scholar
  38. 38.
    A. Bower, N. Fleck, A. Needleman, and N. Ogbonna, Indentation of a Power Law Creeping Solid, Proc. R. Soc. Lond. Ser. A, 1993, 441(1911), p 97–124CrossRefGoogle Scholar
  39. 39.
    M. Mayo and W. Nix, A Micro-indentation Study of Superplasticity in Pb, Sn, and Sn-38 wt.% Pb, Acta Metall., 1988, 36(8), p 2183–2192CrossRefGoogle Scholar
  40. 40.
    T.H. Courtney, Mechanical Behavior of Materials, Waveland Press, Long Grove, 2005, p 294–314Google Scholar
  41. 41.
    X. Liu, Q. Zhang, X. Zhao, X. Yang, and L. Luo, Ambient-Temperature Nanoindentation Creep in Ultrafine-Grained Titanium Processed by ECAP, Mater. Sci. Eng. A, 2016, 676, p 73–79CrossRefGoogle Scholar
  42. 42.
    H.E. Evans, Mechanisms of Creep Fracture, Elsevier, Amsterdam, 1984Google Scholar
  43. 43.
    B.Q. Han, E.J. Lavernia, and F.A. Mohamed, Dislocation Structure and Deformation in Iron Processed by Equal-Channel-Angular Pressing, Metall. Mater. Trans. A, 2004, 35(4), p 1343–1350CrossRefGoogle Scholar
  44. 44.
    P. Kral, S. Zherebtsov, G. Salishchev, M. Kvapilova, and V. Sklenicka, Effect of Severe Plastic Deformation on Creep Behaviour of a Ti-6Al-4V Alloy, J. Mater. Sci., 2013, 48(13), p 4789–4795CrossRefGoogle Scholar
  45. 45.
    W.J. Evans and G.F. Harrison, Power Law Steady State Creep in α/β Titanium Alloys, J. Mater. Sci., 1983, 18(11), p 3449–3455CrossRefGoogle Scholar
  46. 46.
    V. Sklenička, J. Dvořák, and M. Svoboda, Creep in Ultrafine Grained Aluminium, Mater. Sci. Eng. A, 2004, 387(1), p 696–701CrossRefGoogle Scholar
  47. 47.
    C. Xu and T.G. Langdon, Creep and Superplasticity in a Spray-Cast Aluminum Alloy Processed by ECA Pressing, Mater. Sci. Eng. A, 2005, 410(12), p 398–401CrossRefGoogle Scholar
  48. 48.
    P. Kral, M. Svoboda, J. Dvorak, M. Kvapilova, and V. Sklenicka, Microstructure Mechanisms Governing the Creep Life of Ultrafine-Grained Cu-0.2 wt.%Zr Alloy, Acta Phys. Pol. A, 2012, 122(3), p 457–460CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations