Oxidation Behavior of Austenitic Steels in Supercritical Water Containing Dissolved Oxygen

  • Zhongliang ZhuEmail author
  • Hongyuan Li
  • Qiong Cao


Oxidation tests of austenitic steel Super304H and HR3C were conducted at 550-600 °C in supercritical water under 25 MPa with the dissolved oxygen content. The oxidation rate of Super304H rapidly increased with increasing temperature, while the weight change of HR3C at 600 °C is slightly larger than that at 550 °C. A double-layer oxide scale developed on Super304H and HR3C steel, which was made up of an Fe-rich outer layer and a Cr-rich inner layer. The criterion contents of Cr were calculated for Super304H and HR3C. The effect of temperature and the Cr content on oxidation rate and oxide composition were discussed.


oxidation steel supercritical water temperature 



This paper was supported by Beijing Natural Science Foundation, China (3154041), and the Fundamental Research Funds for the Central Universities, China.


  1. 1.
    R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and R. Purgert, US Program on Materials Technology for Ultra-Supercritical Coal Power Plants, J. Mater. Eng. Perform., 2005, 14(3), p 281–292CrossRefGoogle Scholar
  2. 2.
    T. Yamaguchi, Structure of Subcritical and Supercritical Hydrogen-Bonded Liquids and Solutions, J. Mol. Liq., 1998, 78, p 43–50CrossRefGoogle Scholar
  3. 3.
    P. Kritzer, Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review, J. Supercrit. Fluid., 2004, 29, p 1–29CrossRefGoogle Scholar
  4. 4.
    P. Kritzer and E. Dinjus, An Assessment of Supercritical Water Oxidation (SCWO): Existing Problems, Possible Solutions and New Reactor Concepts, Chem. Eng. J., 2001, 83, p 207–214CrossRefGoogle Scholar
  5. 5.
    Y. Chen, A. Kruizenga, X. Ren, L. Tan, Y. Yang, K. Sridharan, T.R. Allen, Progress in understanding corrosion in supercritical water systems, in 3rd Int. Symposium on SCWR-Design and Technology, vol. 128, 2007Google Scholar
  6. 6.
    M.C. Sun, X.Q. Wu, Z.E. Zhang, and E.H. Han, Progress in Corrosion Resistant Materials for Supercritical Water Reactors, Corros. Sci., 2009, 51, p 2508–2523CrossRefGoogle Scholar
  7. 7.
    T. Miyazawa, T. Terachi, S. Uchida, T. Satoh, T. Tsukada, Y. Satoh, Y. Wada, and H. Hosokawa, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel (V) Characterization of Oxide Film with Multilateral Surface Analyses, J. Nucl. Sci. Technol., 2006, 43, p 884–895CrossRefGoogle Scholar
  8. 8.
    C.S. Kumai and T.M. Devine, Influence of oxygen concentration of 288 °C water and alloy composition on the films formed on Fe-Ni-Cr alloys, Corrosion, 2007, 63, p 1101–1113CrossRefGoogle Scholar
  9. 9.
    D.J. Kim, H.C. Kwon, and H.P. Kim, Effects of the Solution Temperature and the pH on the Electrochemical Properties of the Surface Oxide Films Formed on Alloy 600, Corros. Sci., 2008, 50, p 1221–1227CrossRefGoogle Scholar
  10. 10.
    Z. Szklarska-Smialowska, K.C. Chou, and Z. Xia, The Composition and Properties of Oxide Films on Type 304 Stainless Steel on Exposure to Lithiated Water at 100-350 °C, Corros. Sci., 1991, 32(5–6), p 609–619CrossRefGoogle Scholar
  11. 11.
    H. Sun, X. Wu, and E.H. Han, Effects of Temperature on the Oxide Film Properties of 304 Stainless Steel in High Temperature Lithium Borate Buffer Solution, Corros. Sci., 2009, 51, p 2840–2847CrossRefGoogle Scholar
  12. 12.
    N.Q. Zhang, Z.L. Zhu, G.Q. Yue, D.F. Jiang, and H. Xu, The Oxidation Behaviour of an Austenitic Steel in Deaerated Supercritical Water at 600-700 °C, Mater. Charact., 2017, 132, p 119–125CrossRefGoogle Scholar
  13. 13.
    W.J. Kuang, X.Q. Wu, E.H. Han, and J.C. Rao, Effect of Alternately Changing the Dissolved Ni Ion Concentration on the Oxidation of 304 Stainless Steel in Oxygenated High Temperature Water, Corros. Sci., 2011, 53, p 2582–2591CrossRefGoogle Scholar
  14. 14.
    W.J. Kuang, X.Q. Wu, E.H. Han, and L.Q. Ruan, Effect of Nickel Ion from Autoclave Material on Oxidation Behaviour of 304 Stainless Steel in Oxygenated High Temperature Water, Corros. Sci., 2011, 53, p 1107–1114CrossRefGoogle Scholar
  15. 15.
    M. Fulger, M. Mihalache, D. Ohai, S. Fulger, and S.C. Valeca, Analyses of Oxide Films Grown on AISI, 304L Stainless Steel and Incoloy 800HT Exposed to Supercritical Water Environment, J. Nucl. Mater., 2011, 415, p 147–157CrossRefGoogle Scholar
  16. 16.
    X. Luo, R. Tang, C.S. Long, Z. Miao, Q. Peng, and C. Li, Corrosion Behavior of Austenitic and Ferritic Steels in Supercritical Water, Nucl. Eng. Technol., 2008, 40, p 147–154CrossRefGoogle Scholar
  17. 17.
    T.R. Allen, K. Sridharan, Y. Chen, L.Z. Tan, X.W. Ren, and A. Kruizenga, Research and development on materials corrosion issues in supercritical water environment, in Proceedings of the 15th International Conference on the Properties of Water and Steam (ICPWS XV), (Radisson SAS Hotel Berlin, Germany, 2008), pp. 7–11Google Scholar
  18. 18.
    I. Betova, M. Bojinov, P. Kinnunen, S. Penttila, and T. Saario, Surface Film Electrochemistry of Austenitic Stainless Steel and its Main Constituents in Supercritical Water, J. Supercrit. Fluids, 2007, 43, p 333–340CrossRefGoogle Scholar
  19. 19.
    S. Penttila, I. Betova, M. Bojinov, P. Kinnunen, and A. Toivonen, Estimation of Kinetic Parameters of the Corrosion Layer Constituents on Steels in Supercritical Water Coolant Conditions, Corros. Sci., 2011, 53, p 4193–4203CrossRefGoogle Scholar
  20. 20.
    G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, Corrosion and Stress Corrosion Cracking in Supercritical Water, J. Nucl. Mater., 2007, 371, p 176–201CrossRefGoogle Scholar
  21. 21.
    G.S. Was and T.R. Allen, Time, Temperature, and Dissolved Oxygen Dependence of Oxidation of Austenitic and Ferritic–Martensitic Alloys in Supercritical Water, Proc. ICAPP, 2005, 5, p 15–19Google Scholar
  22. 22.
    N.Q. Zhang, Z.L. Zhu, H. Xu, X.P. Mao, and J. Li, Oxidation of Ferritic and Ferritic–Martensitic Steels in Flowing and Static Supercritical Water, Corros. Sci., 2016, 103, p 124–131CrossRefGoogle Scholar
  23. 23.
    P.M. Rosecrans, N. Lewis, and D.J. Duquette, Effect of corrosion film composition and structure on the corrosion kinetics of Ni-Cr-Fe alloys in high temperature water, Lockheed Martin Corporation, Schenectady, NY 12301 (US), 2002Google Scholar
  24. 24.
    C. Wagner, Diffusion and high temperature oxidation of metals, in Atom Movements (ASM, Metals Park, Cleveland, OH, 1951), pp 153–173Google Scholar
  25. 25.
    T. Dudziak, M. Łukaszewicz, N. Simms, and J.R. Nicholls, Steam Oxidation of TP347HFG, Super 304H and HR3C-Analysis of Significance of Steam Flowrate and Specimen Surface Finish, Corros. Eng. Sci. Technol., 2015, 50, p 272–282CrossRefGoogle Scholar
  26. 26.
    M. Lukaszewicz, N.J. Simms, T. Dudziak, and J.R. Nicholls, Effect of Steam Flow Rate and Sample Orientation on Steam Oxidation of Ferritic and Austenitic Steels at 650 and 700 °C, Oxid. Met., 2013, 79, p 473–483CrossRefGoogle Scholar
  27. 27.
    P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Publishers Ltd., London, 1988Google Scholar
  28. 28.
    S. Cissé, L. Laffont, B. Tanguy, M.C. Lafont, and E. Andrieu, Effect of Surface Preparation on the Corrosion of Austenitic Stainless Steel 304L in High Temperature Steam and Simulated PWR Primary Water, Corros. Sci., 2012, 56, p 209–216CrossRefGoogle Scholar
  29. 29.
    M. Nezakat, H. Akhiani, S. Penttilä, S.M. Sabet, and J. Szpunar, Effect of Thermo-Mechanical Processing on Oxidation of Austenitic Stainless Steel 316L in Supercritical Water, Corros. Sci., 2015, 94, p 197–206CrossRefGoogle Scholar
  30. 30.
    H.L. Hu, Z.J. Zhou, M. Li, L.F. Zhang, M. Wang, S.F. Li, and C.C. Ge, Study of the Corrosion Behavior of a 18Cr-oxide Dispersion Strengthened Steel in Supercritical Water, Corros. Sci., 2012, 65, p 209–213CrossRefGoogle Scholar
  31. 31.
    N. Otsuka, Y. Shida, and H. Fujikawa, Internal–External Transition for the Oxidation of Fe-Cr-Ni Austenitic Stainless Steels in Steam, Oxid. Met., 1989, 32, p 13–45CrossRefGoogle Scholar
  32. 32.
    N.Q. Zhang, Z.L. Zhu, Q. Cao, J.J. Gui, and H. Xu, Influence of Temperature on the Oxidation Behavior of an Austenitic Steel in Deaerated Supercritical Water, Mater. Corros., 2018, 69, p 319–327CrossRefGoogle Scholar
  33. 33.
    A.N. Hansson, H. Danielsen, F.B. Grumsen, and M. Montgomery, Microstructural Investigation of the Oxide Formed on TP 347HFG During Long-Term Steam Oxidation, Mater. Corros., 2010, 61, p 665–675Google Scholar
  34. 34.
    J. Robertson, The Mechanism of High Temperature Aqueous Corrosion of Stainless Steels, Corros. Sci., 1991, 32, p 443–465CrossRefGoogle Scholar
  35. 35.
    X. Gao, X.Q. Wu, Z.E. Zhang, H. Guan, and E.H. Han, Characterization of Oxide Films Grown on 316L Stainless Steel Exposed to H2O2-Containing Supercritical Water, J. Supercrit. Fluids, 2007, 42, p 157–163CrossRefGoogle Scholar
  36. 36.
    M.C. Sun, X.Q. Wu, Z.E. Zhang, and E.H. Han, Analyses of Oxide Films Grown on Alloy 625 in Oxidizing Supercritical Water, J. Supercrit. Fluids, 2008, 47, p 309–317CrossRefGoogle Scholar
  37. 37.
    T. Terachi, K. Fujii, and K. Arioka, Microstructural Characterization of SCC Crack Tip and Oxide Film for SUS 316 Stainless Steel in Simulated PWR Primary Water at 320 °C, J. Nucl. Sci. Technol., 2005, 42, p 225–232CrossRefGoogle Scholar
  38. 38.
    T. Ericsson, Stratified Oxide Scale Growth on Two Cr-Ni Steels Oxidized in Highpressure Steam at 800 °C, Oxid. Met., 1970, 2, p 173–205CrossRefGoogle Scholar
  39. 39.
    C. Wagner, Theoretical Analysis of the Diffusion Processes Determining the Oxidation Rate of Alloys, J. Electrochem. Soc., 1952, 99, p 369–380CrossRefGoogle Scholar
  40. 40.
    R.A. Rapp, The Transition from Internal to External Oxidation and the Formation of Interruption Bands in Silver-Indium Alloys, Acta Metall., 1961, 9, p 730–741CrossRefGoogle Scholar
  41. 41.
    D. Juve-Duc, D. Treheux, and P. Guiraldenq, Autodiffusion en volume et intergranulaire du 59Fe dans une austenite a 18% Cr et 10% de tres haute purete, Scripta. Met., 1978, 12, p 1107–1110CrossRefGoogle Scholar
  42. 42.
    P. Guiraldenq and P. Poyet, Influence of Nickel on the Volume and Intercrystalline Diffusion in Austenitic Fe-Cr-Ni alloys—Grain Boundary Energy Evolution as a Function of Composition, Mem. Sci. Rev. Metall., 1973, 70, p 715–723Google Scholar
  43. 43.
    P. Moulin, A.M. Huntz, and P. Lacombe, Influence du carbone sur la diffusion du chrome et du nickel en volume et dans les joints de grains de l’alliage Ni-Cr 80/20, Acta. Met., 1979, 27, p 1431–1443CrossRefGoogle Scholar
  44. 44.
    J.H. Swisher and E.T. Turkdogan, Solubility, Permeability, and Diffusivity of Oxygen in Solid Iron, AIME Met. Soc. Trans., 1967, 239, p 426–431Google Scholar
  45. 45.
    E. Fromm and E. Gebhardt, Gase und Kohlenstoff in Metallen, Springer, Berlin, 1976CrossRefGoogle Scholar
  46. 46.
    N.Q. Zhang, Z.L. Zhu, G.Q. Yue, D.F. Jiang, and H. Xu, The Oxidation Behaviour of an Austenitic Steel in Deaerated Supercritical Water at 600-700 °C, Mater. Charact., 2017, 132, p 119–125CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of EducationNorth China Electric Power UniversityBeijingPeople’s Republic of China
  2. 2.School of Control and Computer EngineeringNorth China Electric Power UniversityBeijingPeople’s Republic of China
  3. 3.Beijing Key Laboratory of Passive Safety Technology for Nuclear EnergyNorth China Electric Power UniversityBeijingPeople’s Republic of China

Personalised recommendations