Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 512–518 | Cite as

ZrB2-SiC-Ta4HfC5/Ta4HfC5 Oxidation-Resistant Dual-Layer Coating Fabricated by Spark Plasma Sintering for C/C Composites

  • Changling Zhou
  • Yushi QiEmail author
  • Yehong Cheng
  • Wenbo Han


In this work, a ZrB2-SiC-Ta4HfC5/Ta4HfC5 oxidation-resistant dual-layer coating was fabricated to improve the oxidation resistance of carbon–carbon (C/C) composites. The coating was prepared by pack cementation combined with the slurry paste method. Spark plasma sintering was used in the procedure. The as-prepared dual-layer coating was approximately 110 μm, and no distinct interface was observed between the coating and the matrix. The isothermal oxidation test results showed that the dual coating effectively prevented C/C composites from oxidizing. The weight loss of the coated samples was only 3.3 and 9.5% after oxidation at 1773 K for 20 h and ten thermal shock cycles between 1773 K and room temperature in air, respectively. The pores and microcracks were the main reason for the failure of the coating.


dual-layer coating oxidation resistance spark plasma sintering ZrB2-SiC-Ta4HfC5 



This work is supported by the National Natural Science Foundation of China under Grant Nos. 11572105 and 51772061, the National Fund for Distinguished Young Scholars (No. 51525201), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 11421091), the Major State Basic Search Program (No. 2014CB46505).


  1. 1.
    Y.L. Zhang, T. Fei, W.Y. Zeng et al., Microstructure and Oxidation Behavior of C/C-ZrB2-SiC Composites Coated with SiC Coating at High Temperature, Corros. Sci., 2015, 100, p 421–427CrossRefGoogle Scholar
  2. 2.
    J.E. Sheehan, Oxidation Protection for Carbon Fiber Composites, Carbon, 1989, 27(5), p 709–715CrossRefGoogle Scholar
  3. 3.
    K.J. Lee, M.J. Tsai, and H.Z. Cheng, Effect of Densification Parameters on the Low-Energy Tribological Behavior of Carbon/Carbon Composites, Carbon, 2010, 48(5), p 1353–1361CrossRefGoogle Scholar
  4. 4.
    C.A.A. Cairo, M. Florian, M.L.A. Graça et al., Kinetic Study by TGA of the Effect of Oxidation Inhibitors for Carbon–Carbon Composite, Mater. Sci. Eng. A, 2003, 358(1–2), p 298–303CrossRefGoogle Scholar
  5. 5.
    M.Y. Hao, R.Y. Luo, Q. Xiang et al., Effects of Fiber-Type on the Microstructure and Mechanical Properties of Carbon/Carbon Composites, New Carbon Mater., 2014, 30(4), p 364–371Google Scholar
  6. 6.
    S. Zhou, Y. Qi, P. Wang et al., A ZrB2–SiC/SiC Oxidation Protective Dual-Layer Coating for Carbon/Carbon Composites, Adv. Appl. Ceram., 2017, 116(8), p 1–6CrossRefGoogle Scholar
  7. 7.
    Y. Chu, H. Li, Q. Fu et al., Oxidation Protection of C/C Composites with a Multilayer Coating of SiC and Si + SiC + SiC Nanowires, Carbon, 2012, 50(3), p 1280–1288CrossRefGoogle Scholar
  8. 8.
    Q.G. Fu, J.Y. Jing, B.Y. Tan et al., Nanowire-Toughened Transition Layer to Improve the Oxidation Resistance of SiC–MoSi2–ZrB2, Coating for C/C Composites, Corros. Sci., 2016, 111, p 259–266CrossRefGoogle Scholar
  9. 9.
    N.S. Jacobson and D.M. Curry, Oxidation Microstructure Studies of Reinforced Carbon/Carbon, Carbon, 2006, 44(7), p 1142–1150CrossRefGoogle Scholar
  10. 10.
    X. Ren, H. Li, Q. Fu et al., Ultra-high Temperature Ceramic TaB 2–TaC–SiC Coating for Oxidation Protection of SiC-Coated Carbon/Carbon Composites, Ceram. Int., 2014, 40(7), p 9419–9425CrossRefGoogle Scholar
  11. 11.
    S. Chen, C. Zhang, Y. Zhang et al., Preparation and Properties of Carbon Fiber Reinforced ZrC–ZrB2, Based Composites via Reactive Melt Infiltration, Compos. B Eng., 2014, 60(1), p 222–226CrossRefGoogle Scholar
  12. 12.
    Y. Wang, J. Yang, J. Liu et al., Fabrication of Oxidation Protective Coatings on C/C–SiC Brake Materials at Room Temperature, Surf. Coat. Technol., 2012, 207(21), p 467–471CrossRefGoogle Scholar
  13. 13.
    S.Z. Nazarova, E.Z. Kurmaev, N.I. Medvedeva et al., Physical Properties and Electronic Structure of TaC-HfC Solid Solutions, Russ. J. Inorg. Chem., 2007, 52(2), p 233–237CrossRefGoogle Scholar
  14. 14.
    O. Cedillos-Barraza, S. Grasso, N.A. Nasiri et al., Sintering Behaviour, Solid Solution Formation and Characterisation of TaC, HfC and TaC–HfC Fabricated by Spark Plasma Sintering, J. Eur. Ceram. Soc., 2016, 36(7), p 1539–1548CrossRefGoogle Scholar
  15. 15.
    R. He, R. Zhang, Y. Pei et al., Two-Step Hot Pressing of Bimodal Micron/Nano-ZrB2, Ceramic with Improved Mechanical Properties and Thermal Shock Resistance, Int. J. Refract Metal Hard Mater., 2014, 46(1), p 65–70CrossRefGoogle Scholar
  16. 16.
    J. Schulte-Fischedick, J. Schmidt, R. Tamme et al., Oxidation Behaviour of C/C–SiC Coated with SiC–B4C–SiC–Cordierite Oxidation Protection System, Mater. Sci. Eng. A, 2004, 386(1–2), p 428–434CrossRefGoogle Scholar
  17. 17.
    X. Yang, Q. Huang, Z. Su et al., A Double Layer Nanostructure SiC Coating for Anti-oxidation Protection of Carbon/Carbon Composites Prepared by Chemical Vapor Reaction and Chemical Vapor Deposition, Ceram. Int., 2013, 39(5), p 5053–5062CrossRefGoogle Scholar
  18. 18.
    C. Sun, H.J. Li, Q.G. Fu et al., ZrSiO4, Oxidation Protective Coating for SiC-Coated Carbon/Carbon Composites Prepared by Supersonic Plasma Spraying, J. Therm. Spray Technol., 2013, 22(4), p 525–530CrossRefGoogle Scholar
  19. 19.
    M. Chen, J.G. Li, H.T. Yang et al., Preparation of Coated ZrSiO4-ZrB2 Using Sol–Gel Method and its Oxidation Resistance, Key Eng. Mater., 2017, 727, p 947–952CrossRefGoogle Scholar
  20. 20.
    E.P. Simonenko, N.A. Ignatov, N.P. Simonenko et al., Synthesis of Highly Dispersed Super-Refractory Tantalum-Zirconium Carbide Ta4ZrC5, Tantalum-Hafnium Carbide Ta4HfC5, via Sol–Gel Technology, Russ. J. Inorg. Chem., 2011, 56(11), p 1681–1687CrossRefGoogle Scholar
  21. 21.
    D. Sciti, L. Silvestroni, S. Guicciardi et al., Processing, Mechanical Properties and Oxidation Behavior of TaC and HfC Composites Containing 15 vol% TaSi2 or MoSi2, J. Mater. Res., 2009, 24(06), p 2056–2065CrossRefGoogle Scholar
  22. 22.
    J. Liu, L.Y. Cao, J.F. Huang et al., A ZrSiO4/SiC Oxidation Protective Coating for Carbon/Carbon Composites, Surf. Coat. Technol., 2012, 206(14), p 3270–3274CrossRefGoogle Scholar
  23. 23.
    A. Kaiser, M. Lobert, and R. Telle, Thermal Stability of Zircon (ZrSiO4), J. Eur. Ceram. Soc., 2008, 28(11), p 2199–2211CrossRefGoogle Scholar
  24. 24.
    X.H. Fang, Y.I. Mao-Zhong, J.L. Zuo et al., Preparation and Oxidation Resistance of Self-Healing Coating for C/C Composite, Mater. Prot., 2005, 38, p 17–20Google Scholar
  25. 25.
    W.H. Kong, J.F. Huang, C.Y. Li et al., Microstructure Analysis and Preparation of B2O3-Modified ZrSiO4/SiC Oxidation Resistant Coatings, Mater. Sci. Forum, 2015, 809–810, p 642–648Google Scholar
  26. 26.
    M. Huang, K.Z. Li, H.J. Li et al., Preparation of SiC/Cr-Al-Si Coating for C/C Composites by Two-Step Pack Cementation Method, J. Xian Shiyou Univ., 2009, 24(2), p 89–92Google Scholar
  27. 27.
    L. Snell, A. Nelson, and P. Molian, A Novel Laser Technique for Oxidation-Resistant Coating of Carbon–Carbon Composite, Carbon, 2001, 39(7), p 991–999CrossRefGoogle Scholar
  28. 28.
    D.L. Ye and J.H. HU, Handbook of Thermodynamic Data, 2nd ed., Metallurgical Industry Press, Beijing, 2002Google Scholar
  29. 29.
    D.E. Winterbone, Advanced Thermodynamics for Engineers, Butterworth Heinemann, London, 1996Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Changling Zhou
    • 1
  • Yushi Qi
    • 2
    Email author
  • Yehong Cheng
    • 1
  • Wenbo Han
    • 1
  1. 1.National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations