Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 231–241 | Cite as

Design and Development of Galvannealed Dual-Phase Steel: Microstructure, Mechanical Properties and Weldability

  • Sourabh Chatterjee
  • Soumyajit KoleyEmail author
  • Rudra Bubai Sarkar
  • Nibedita Behera
  • Manindra Manna
  • Subrata Mukherjee
  • Saurabh Kundu


It was attempted to produce galvannealed dual-phase (DP) steel through a commercial continuous galvanizing line (CGL). The main challenge was to form the DP microstructure even with the slow cooling rate after annealing in the CGL. A two-pronged approach was adopted for this, viz. design of the steel chemistry with calculations and optimization of the CGL parameters with simulation using Gleeble-3800 thermomechanical simulator. The steel thus produced in CGL revealed ferrite and 18 ± 2% martensite microstructure, with tensile strength exceeding 600 MPa and 24% total elongation along with good formability. Weldability study using resistance spot welding indicated the possibility of achieving sound joint with a 4-kA width in weld time–current lobe despite the high carbon equivalence.


dual-phase formability galvannealing mechanical properties resistance spot welding steel weldability 



The authors would like to express sincere gratitude to the management of Tata Steel Ltd., for the permission to carry out the work and publish the results. This would not be completed without thanking all the line staff at various mills such as steelmaking shop, hot-rolling and cold-rolling mill for their kind cooperation while executing the trial plan to make this a success at this scale.


  1. 1.
    D.K. Matlock and J.G. Speer, Third Generation of AHSS: Microstructure Design Concepts, Microstructure and Texture in Steels, Springer, London, 2009, p 185CrossRefGoogle Scholar
  2. 2.
    K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto, Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel, Metall. Mater. Trans. A, 1992, 23, p 3085–3091CrossRefGoogle Scholar
  3. 3.
    R.O. Rocha, T.M.F. Melo, E.V. Pereloma, and D.B. Santos, Microstructural Evolution at the Initial Stages of Continuous Annealing of Cold Rolled Dual-Phase Steel, Mater. Sci. Eng. A, 2005, 391(1-2), p 296–304CrossRefGoogle Scholar
  4. 4.
    P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay, The Developments of Cold-Rolled TRIP-Assisted Multiphase Steels. Al-Alloyed TRIP-Assisted Multiphase Steels, ISIJ Int., 2001, 41(9), p 1068–1074CrossRefGoogle Scholar
  5. 5.
    P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag, and F. Delannay, Bainite Transformation of Low Carbon Mn-Si TRIP-Assisted Multiphase Steels: Influence of Silicon Content on Cementite Precipitation and Austenite Retention, Mater. Sci. Eng. A, 1999, 273–275, p 475CrossRefGoogle Scholar
  6. 6.
    N. Matsumura and M. Tokizane, Microstructure and Mechanical Properties of Dual-Phase Steel Produced by Intercritical Annealing of Lath Martensite, Trans. Iron Steel Inst. Jpn., 1984, 24, p 648–654CrossRefGoogle Scholar
  7. 7.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole, Formation of Ultrafine Grained Dual Phase Steels Through Rapid Heating, ISIJ Int., 2011, 51, p 958–964CrossRefGoogle Scholar
  8. 8.
    H. Shirasawa, Y. Tanaka, M. Miyahara, and Y. Baba, Production of Formable TS980MPa Grade Cold-Rolled Steel, Trans. Iron Steel Inst. Jpn., 1986, 26(14), p 310–314CrossRefGoogle Scholar
  9. 9.
    D. Bombac, M. Peet, S. Zenitani, S. Kimura, T. Kurimura, and H.K.D.H. Bhadeshia, An Integrated Hot-Rolling and Microstructure Model for Dual-Phase Steels, Modell. Simul. Mater. Sci. Eng., 2014, 22, p 0455005CrossRefGoogle Scholar
  10. 10.
    D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall. Mater. Trans. A, 1985, 16, p 1385–1392CrossRefGoogle Scholar
  11. 11.
    R. Khondker, A. Mertens, and J.R. McDermid, Effect of Annealing Atmosphere on the Galvanizing Behavior of a Dual-Phase Steel, Mater. Sci. Eng. A, 2007, 463(1-2), p 157–165CrossRefGoogle Scholar
  12. 12.
    K. Mukherjee, S. Hazra, and M. Militzer, Grain Refinement in Hot Rolled Dual Phase Steels, Soc. Automot. Eng. Tech. Pap. 1432, 2006, CrossRefGoogle Scholar
  13. 13.
    F.J. Humphreys, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004Google Scholar
  14. 14.
    G. Krauss, Steels: Heat Treatment and Processing Principles, ASM International, Russell Township, 1989Google Scholar
  15. 15.
    Y. Tobiyama, K. Osawa, and M. Hirata, Development of 590 MPa Grade Galvannealed Sheet Steels with Dual Phase Structure, Kawasaki Steel Tech. Rep., 2000, 42, p 19–23Google Scholar
  16. 16.
    J. Kong and C. Xie, Effect of Molybdenum on Continuous Cooling Bainite Transformation of Low-Carbon Microalloyed Steel, Mater. Des., 2006, 27, p 1169–1173CrossRefGoogle Scholar
  17. 17.
    J. Maki, J. Mahieu, B.C. DeCooman, and S. Claessens, Galvanisability of Silicon Free CMnAl TRIP Steels, Mater. Sci. Technol., 2003, 19, p 125–131CrossRefGoogle Scholar
  18. 18.
    Thermo-Calc 2015a (1995–2015) Foundation of Computational Thermodynamics. Stockholm, SwedenGoogle Scholar
  19. 19.
    EWI Virtual Joining Portal, TTT and CCT Diagram with Steel Composition (2008), Accessed Oct 2014
  20. 20.
    H.K.D.H. Bhadeshia, Thermodynamic Analysis of Isothermal Transformation Diagram, Metal Sci., 1982, 16, p 159–165CrossRefGoogle Scholar
  21. 21.
    S.S. Babu, Acicular Ferrite and Bainite in Fe-Cr-C Weld Deposits, Ph.D Dissertation, University of Cambridge, UK, 1991Google Scholar
  22. 22.
    Standard BS 1140, Specification for Resistance Spot Welding of Uncoated and Coated Low Carbon Steel, BSI, Publications, London, 1993Google Scholar
  23. 23.
    H.J.T. Ellingham, Reducibility of Oxides and Sulphides in Metallurgical Processes, Trans. Commun. J. Soc. Chem. Ind., 1944, 63, p 125CrossRefGoogle Scholar
  24. 24.
    G.R. Speich, V.A. Demarest, and R.L. Miller, Formation of Austenite During Intercritical Annealing of Dual-Phase Steels, Metall. Mater. Trans. A, 1981, 12, p 1419–1428CrossRefGoogle Scholar
  25. 25.
    C.I. Garcia and A.J. Deardo, Formation of Austenite in 1.5 pct Mn Steels, Metall. Mater. Trans. A, 1981, 12, p 521–530CrossRefGoogle Scholar
  26. 26.
    J.J. Yi, I.S. Kim, and H.S. Choi, Austenitization During Intercritical Annealing of an Fe-C-Si-Mn Dual-Phase Steel, Metall. Mater. Trans. A, 1985, 16, p 1237–1245CrossRefGoogle Scholar
  27. 27.
    L. Meyer, F. Heisterkamp, and W. Müchenborn, Micro Alloying, Union Carbide Corporation, Metals Division, New York, 1975, p 153Google Scholar
  28. 28.
    W. Bleck, and J.O. Andreas Frehn, International Symposium on Niobium, Orlando, USA (2001)Google Scholar
  29. 29.
    D.T. Llewellyn and R.C. Hudd, Steels: Metallurgy and Applications, Butterworth-Heinemann, Oxford, 1988, p 28Google Scholar
  30. 30.
    O. Kubaschewski and T. Massalski, Binary Alloy Phase Diagrams, Metals Park, ASM, Russell Township, 1986, p 1128Google Scholar
  31. 31.
    A.R. Marder, The Metallurgy of Zinc-Coated Steel, Prog. Mater Sci., 2000, 45, p 191–271CrossRefGoogle Scholar
  32. 32.
    A. Besseyrias, F. Dalard, J.J. Rameau, and H. Baudin, Electrochemical Behaviour of Zinc-Iron Intermetallic Compounds in an Aqueous Solution Containing NaCl and ZnSO4, Corros. Sci., 1997, 39(10-11), p 1883–1896CrossRefGoogle Scholar
  33. 33.
    G.B.C. Ma, D.L. Chena, S.D. Bhole, A. Lee, and E. Biro, Microstructure and Fracture Characteristics of Spot-Welded DP600 Steel, Mater. Sci. Eng. A, 2008, 485, p 334CrossRefGoogle Scholar
  34. 34.
    M.I. Khan, M.L. Kuntz, and Y. Zhou, Effects of Weld Microstructure on Static and Impact Performance of Resistance Spot Welded Joints in Advanced High Strength Steels, Sci. Technol. Weld. Join., 2008, 13, p 294–304CrossRefGoogle Scholar
  35. 35.
    Y.J. Chao, Failure Modes of Spot Welds: Interfacial Versus Pull Out, Sci. Technol. Weld. Join., 2003, 8, p 133–137Google Scholar
  36. 36.
    M. Pouranvari, S.P.H. Marashi, and D.S. Safanama, Failure Mode Transition in AHSS Resistance Spot Welds. Part II: Experimental Investigation and Model Validation, Mater. Sci. Eng. A, 2011, A528, p 8344–8352CrossRefGoogle Scholar
  37. 37.
    X. Sun, E.V. Stephens, and Mohammad A. Khaleel, Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds Under Lap Shear Loading Conditions, Eng. Fail. Anal., 2008, 15, p 356–367CrossRefGoogle Scholar
  38. 38.
    M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, P.H. Marashi, and M. Goodarzi, Effect of Weld Nugget Size on Overload Failure Mode of Resistance Spot Welds, Sci. Technol. Weld. Join., 2007, 12(3), p 217–225CrossRefGoogle Scholar
  39. 39.
    M. Marya and X.Q. Gayden, Development of Requirements for Resistance Spot Welding Dual-Phase (DP600) Steels Part 1—The Causes of Interfacial Fracture, Weld. J., 2005, 84, p 172s–182sGoogle Scholar
  40. 40.
    M. Victor Li, P. Dong, and M. Kimchi, Modeling and Analysis of Microstructure Development in Resistance Spot Welds of High Strength Steels International, SAE Technical Paper Number 982278, Warrendale, PA, USA, 1998.Google Scholar
  41. 41.
    M. Volger, Investigation of resistance spot weld formation, Ph.D. Thesis, Stanford University, Palo Alto, CA, USA, 1993.Google Scholar
  42. 42.
    J.E. Gould, S.P. Khurana, and T. Li, Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels, Weld. J., 2006, 86, p 111s–116sGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Sourabh Chatterjee
    • 1
  • Soumyajit Koley
    • 1
    Email author
  • Rudra Bubai Sarkar
    • 1
  • Nibedita Behera
    • 1
  • Manindra Manna
    • 1
  • Subrata Mukherjee
    • 1
  • Saurabh Kundu
    • 1
  1. 1.Research & DevelopmentTata Steel LimitedJamshedpurIndia

Personalised recommendations