Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 498–511 | Cite as

Microstructure and Mechanical Characterization of Friction-Stir-Welded 316L Austenitic Stainless Steels

  • R. RameshEmail author
  • I. Dinaharan
  • Ravi Kumar
  • E. T. Akinlabi
Article
  • 83 Downloads

Abstract

Fusion welding of austenitic stainless steels (ASSs) causes undesirable metallographic changes. An attempt has been made to join 3-mm-thick 316L ASS plates using friction stir welding and correlate the microstructural evolution and the mechanical properties under various welding conditions. Tungsten alloy (W-Re) tool was employed for welding. Successful joints were obtained within a range of traverse speeds (45-85 mm/min) used in this work. Various zones were observed across the joint line. The stir zone exhibited considerable grain refinement and traces of delta ferrite phase. EBSD images showed a decreasing grain size with increased traverse speed. XRD patterns and TEM images confirmed the existence of delta ferrite. The mechanical properties of the joints including microhardness, tensile strength, impact toughness and bending were further reported.

Keywords

austenitic stainless steel friction stir welding microstructure tensile strength 

Notes

Acknowledgments

The corresponding author is grateful to Indian Academy of Sciences at Bangalore, Indian National Academy of Sciences at New Delhi and The National Academy of Sciences India at Allahabad for awarding Summer Research Fellowship (Reg. No. ENGT-51, 2015) to carry out this work. The authors are grateful to Materials Joining Laboratory at Indian Institute of Technology Madras, OIM and Texture Lab at Indian Institute of Technology Bombay, Microscopy Lab at University of Johannesburg and PSG College of Technology, Coimbatore, for extending the facilities to carry out this investigation.

References

  1. 1.
    K.H. Lo, C.H. Shek, and J.K.L. Lai, Recent Developments in Stainless Steels, Mater. Sci. Eng. R, 2009, 65, p 39–104CrossRefGoogle Scholar
  2. 2.
    R.K. Gupta and N. Birbilis, The Influence of Nanocrystalline Structure and Processing Route on Corrosion of Stainless Steel A Review, Corros. Sci., 2015, 92, p 1–15CrossRefGoogle Scholar
  3. 3.
    S. Paul and C. Mandal, Biocompatibly Coated 304 Stainless Steel as Superior Corrosion-Resistant Implant Material to 316l steel, J. Mater. Eng. Perform., 2013, 22, p 3147–3154CrossRefGoogle Scholar
  4. 4.
    R. NafarDehsorkhi, S. Sabooni, F. Karimzadeh, A. Rezaeian, and M.H. Enayati, The Effect of Grain Size and Martensitic Transformation on the Wear Behavior of AISI, 304L Stainless Steel, Mater. Des., 2014, 64, p 56–62CrossRefGoogle Scholar
  5. 5.
    T. Morishita, T. Itoh, and Z. Bao, Review of Creep–Fatigue Endurance and Life Prediction of 316 Stainless Steels, Int. J. Press. Vessels Pip., 2016, 139–140, p 228–236CrossRefGoogle Scholar
  6. 6.
    B. Gülença, K. Develi, N. Kahraman, and A. Durgutlu, Experimental Study of the Effect of Hydrogen in Argon as a Shielding Gas in MIG Welding of Austenitic Stainless Steel, Int. J. Hydrogen Energy, 2005, 30, p 1475–1481CrossRefGoogle Scholar
  7. 7.
    E. Ahmadi and A.R. Ebrahimi, Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process, J. Mater. Eng. Perform., 2015, 24, p 1065–1071CrossRefGoogle Scholar
  8. 8.
    S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, and H. Jabbari, Gas Tungsten Arc Welding and Friction Stir Welding of Ultrafine Grained AISI, 304L Stainless Steel: Microstructural and Mechanical Behavior Characterization, Mater. Charact., 2015, 109, p 138–151CrossRefGoogle Scholar
  9. 9.
    J. Luk-Cyra, R. El-Bawaba, J. Lanteigne, H. Champliaud, and A. Vadean, Mechanical Properties of 75% Ar/25% CO2 Flux-Cored Arc Welded E309L Austenitic Stainless Steel, Mater. Sci. Eng. A, 2016, 678, p 197–203CrossRefGoogle Scholar
  10. 10.
    H.L. Li, D. Liu, Y.T. Yan, N. Guo, and J.C. Feng, Microstructural Characteristics and Mechanical Properties of Underwater Wet Flux-Cored Wire Welded 316L Stainless Steel Joints, J. Mater. Process. Technol., 2016, 238, p 423–430CrossRefGoogle Scholar
  11. 11.
    N.A. McPherson, K. Chib, and T.N. Baker, Submerged Arc Welding of Stainless Steel and the Challenge from the Laser Welding Process, J. Mater. Process. Technol., 2003, 134, p 174–179CrossRefGoogle Scholar
  12. 12.
    C. Köse, R. Kaçar, A.P. Zorba, M. Bağırova, and A.M. Allahverdiyev, The Effect of CO2 Laser Beam Welded AISI, 316L Austenitic Stainless Steel on the Viability of Fibroblast Cells, In vitro, Mater. Sci. Eng. C, 2016, 60, p 211–218CrossRefGoogle Scholar
  13. 13.
    J.A. Alcock and B. Baufeld, Diode Laser Welding of Stainless Steel 304L, J. Mater. Process. Technol., 2017, 240, p 138–144CrossRefGoogle Scholar
  14. 14.
    N. Arivazhagan, S. Singh, S. Prakash, and G.M. Reddy, Investigation on AISI, 304 Austenitic Stainless Steel to AISI, 4140 Low Alloy Steel Dissimilar Joints by Gas Tungsten Arc, Electron Beam and Friction Welding, Mater. Des., 2011, 32, p 3036–3050CrossRefGoogle Scholar
  15. 15.
    K.H. Tseng and N.S. Wang, Research on Bead Width and Penetration Depth of Multi Component Flux-Aided Arc Welding of Grade 316 L Stainless Steel, Powder Technol., 2017, 311, p 514–521CrossRefGoogle Scholar
  16. 16.
    G. Cam, Friction Stir Welded Structural Materials: Beyond Al-Alloys, Int. Mater. Rev., 2011, 56, p 1–48CrossRefGoogle Scholar
  17. 17.
    G. İpekoğlu, S. Erim, and G. Çam, Investigation into the Influence of Post-weld Heat Treatment on the Friction Stir Welded AA6061 Al-Alloy Plates with Different Temper Conditions, Metall. Mater. Trans. A, 2014, 45, p 864–877CrossRefGoogle Scholar
  18. 18.
    R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50, p 1–78CrossRefGoogle Scholar
  19. 19.
    G. Çam and S. Mıstıkoğlu, Recent Developments in Friction Stir Welding of Al-Alloys, J. Mater. Eng. Perform., 2014, 23, p 1936–1953CrossRefGoogle Scholar
  20. 20.
    R. Rai, A. De, H.K.D.H. Bhadeshia, and T. DebRoy, Review: Friction Stir Welding Tools, Sci. Technol. Weld. Join., 2011, 16, p 325–342CrossRefGoogle Scholar
  21. 21.
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties, J. Mater. Sci. Technol., 2018, 34, p 39–45CrossRefGoogle Scholar
  22. 22.
    M. Esmailzadeh, M. Shamanian, A. Kermanpur, and T. Saeid, Microstructure and Mechanical Properties of Friction Stir Welded Lean Duplex Stainless Steel, Mater. Sci. Eng. A, 2013, 561, p 486–491CrossRefGoogle Scholar
  23. 23.
    H.B. Cui, G.M. Xie, Z.A. Luo, J. Ma, G.D. Wang, and R.D.K. Misra, The Microstructural Evolution and Impact Toughness of Nugget Zone in Friction Stir Welded X100 Pipeline Steel, J. Alloy. Compd., 2016, 681, p 426–433CrossRefGoogle Scholar
  24. 24.
    L.N. Brewer, M.S. Bennett, B.W. Baker, E.A. Payzant, and L.M.S. Kolbus, Characterization of Residual Stress as a Function of Friction Stir Welding Parameters in Oxide Dispersion Strengthened (ODS) Steel MA956, Mater. Sci. Eng. A, 2015, 647, p 313–321CrossRefGoogle Scholar
  25. 25.
    S. Yoon, R. Ueji, and H. Fujii, Microstructure and Texture Distribution of Ti–6Al–4V Alloy Joints friction Stir Welded Below β-transus Temperature, J. Mater. Process. Technol., 2016, 229, p 390–397CrossRefGoogle Scholar
  26. 26.
    F.C. Liu, J. Liao, Y. Gao, and K. Nakata, Influence of Texture on Strain Localization in Stir Zone of Friction Stir Welded Titanium, J. Alloy. Compd., 2015, 626, p 304–308CrossRefGoogle Scholar
  27. 27.
    K.H. Song, H. Fujii, and K. Nakata, Effect of Welding Speed on Microstructural and Mechanical Properties of Friction Stir Welded Inconel 600, Mater. Des., 2009, 30, p 3972–3978CrossRefGoogle Scholar
  28. 28.
    A.P. Reynolds, W. Tang, T.G. Herold, and H. Prask, Structure, Properties, and Residual Stress of 304L Stainless Steel Friction Stir Welds, Scr. Mater., 2003, 48, p 1289–1294CrossRefGoogle Scholar
  29. 29.
    S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Rapid Formation of the Sigma Phase in 304 Stainless Steel During Friction Stir Welding, Scr. Mater., 2003, 49, p 1175–1180CrossRefGoogle Scholar
  30. 30.
    Y.S. Sato, T.W. Nelson, and C.J. Sterling, Recrystallization in Type 304L Stainless Steel During Friction Stirring, Acta Mater., 2005, 53, p 637–645CrossRefGoogle Scholar
  31. 31.
    T. Miyazawa, Y. Iwamoto, T. Maruko, and H. Fujii, Development of Ir Based Tool for Friction Stir Welding of High Temperature Materials, Sci. Technol. Weld. Join., 2011, 16, p 188–192CrossRefGoogle Scholar
  32. 32.
    L. Zhou, D. Liu, K. Nakata, T. Tsumura, H. Fujii, K. Ikeuchi, Y. Michishita, Y. Fujiya, and M. Morimoto, New Technique of Self-Refilling Friction Stir Welding to Repair Keyhole, Sci. Technol. Weld. Join., 2012, 17, p 649–655CrossRefGoogle Scholar
  33. 33.
    A.N. Siddiquee and S. Pandey, Experimental Investigation on Deformation and Wear of WC Tool During Friction Stir Welding (FSW) of Stainless Steel, Int. J. Adv. Manuf. Technol., 2014, 73, p 479–486CrossRefGoogle Scholar
  34. 34.
    A.R. Darvazi and M. Iranmanesh, Prediction of Asymmetric Transient Temperature and Longitudinal Residual Stress in Friction Stir Welding of 304L Stainless Steel, Mater. Des., 2014, 55, p 812–820CrossRefGoogle Scholar
  35. 35.
    F.C. Liu and T.W. Nelson, In-situ Material Flow Pattern Around Probe During Friction Stir Welding of Austenitic Stainless Steel, Mater. Des., 2016, 110, p 354–364CrossRefGoogle Scholar
  36. 36.
    A.K. Lakshminarayanan, Enhancing the Properties of Friction Stir Welded Stainless Steel Joints via Multi-criteria Optimization, Arch. Civ. Mech. Eng., 2016, 16, p 605–617CrossRefGoogle Scholar
  37. 37.
    S. Shashikumar, N. Murugan, and K.K. Ramachandran, Influence of Tool Material on Mechanical and Microstructural Properties of Friction Stir Welded 316L Austenitic Stainless Steel Butt Joints, Int. J. Refract. Met. Hard Mater., 2016, 58, p 196–205CrossRefGoogle Scholar
  38. 38.
    S. Emami and T. Saeid, Effects of Welding and Rotational Speeds on the Microstructure and Hardness of Friction Stir Welded Single-Phase Brass, Acta Metall. Sin., 2015, 28, p 766–771CrossRefGoogle Scholar
  39. 39.
    J. Lu, L. Hultman, E. Holmstrom, K.H. Antonsson, M. Grehk, W. Li, L. Vitos, and A. Golpayegani, Stacking Fault Energies in Austenitic Stainless Steels, Acta Mater., 2016, 111, p 39–46CrossRefGoogle Scholar
  40. 40.
    X. Zhao, Y. Liu, Y. Wang, P. Feng, and H. Tang, Recrystallization and Grain Growth of 316L Stainless Steel Wires, Metall. Mater. Trans. A, 2014, 45, p 3446–3453CrossRefGoogle Scholar
  41. 41.
    K. Surekha and A. Els-Botes, Development of High Strength, High Conductivity Copper by Friction Stir Processing, Mater. Des., 2011, 32, p 911–916CrossRefGoogle Scholar
  42. 42.
    M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Microstructure and Mechanical Properties of Friction Stir Processed AISI, 316L Stainless Steel, Mater. Des., 2015, 67, p 82–94CrossRefGoogle Scholar
  43. 43.
    M.I. Costa, D. Verdera, M.T. Vieira, and D.M. Rodrigues, Surface Enhancement of Cold Work Tool Steels by Friction Stir Processing with a Pinless Tool, Appl. Surf. Sci., 2014, 296, p 214–220CrossRefGoogle Scholar
  44. 44.
    E. Beraha and B. Shpigler, Color Metallography, American Society for Metals, Ohio, 1977Google Scholar
  45. 45.
    S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, and M. Inagaki, Microstructural Characterisation of Stir Zone Containing Residual Ferrite in Friction Stir Welded 304 Austenitic Stainless Steel, Sci. Technol. Weld. Join., 2005, 10, p 550–556CrossRefGoogle Scholar
  46. 46.
    B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Boston, 1978Google Scholar
  47. 47.
    J.C. Lippold and D.J. Kotecki, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken, 2005Google Scholar
  48. 48.
    D.M.E. Villanueva, F.C.P. Junior, R.L. Plaut, and A.F. Padilha, Comparative Study on Sigma Phase Precipitation of Three Types of Stainless Steels: Austenitic, Superferritic and Duplex, Mater. Sci. Technol., 2006, 22, p 1098–1104CrossRefGoogle Scholar
  49. 49.
    P.B. Prangnell and C.P. Heason, Grain Structure Formation During Friction Stir Welding Observed by the Stop Action Technique, Acta Mater., 2005, 53, p 3179–3192CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • R. Ramesh
    • 1
    Email author
  • I. Dinaharan
    • 2
  • Ravi Kumar
    • 3
  • E. T. Akinlabi
    • 2
  1. 1.Department of Mechanical EngineeringPSG College of TechnologyCoimbatoreIndia
  2. 2.Department of Mechanical Engineering ScienceUniversity of JohannesburgJohannesburgSouth Africa
  3. 3.Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations