Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis

  • Krishna Chaitanya Katakam
  • Pradeep Gupta
  • Natraj YedlaEmail author

We report large-scale molecular dynamics simulation deformation studies of Ni nanowire (NW) of size 100 Å (x) × 1000 Å (y) × 100 Å (z) comprising of 925,965 atoms. Surface and internal defects are introduced to study their effect on the surface profile, strength, fracture behavior and deformation mechanisms. Tensile tests have been carried out at a temperature of 10 K and at a strain rate of 108 s−1. Periodic boundary condition is applied along the loading direction (y). Peak strength of 23 GPa is observed in the perfect NW, and the strength decreases with defects. The surface profiles of the deformed NWs show intrusion and extrusion regions corresponding to slip steps with wider valleys in the defect NWs. Several intrinsic and extrinsic parallel stacking faults (SFs) are generated after yielding by slip occurring on {111} planes. The calculated SF widths are in the range of 0.85-2.57 nm in the perfect NW. The dislocations are mainly Shockley partial dislocations of type 1/6 \(\left\langle {112} \right\rangle\),  and Schmid’s factor (m) obtained is 0.471. Twinning dislocation of types 1/9 \(\left\langle {221} \right\rangle\) and 1/18 \(\left\langle {172} \right\rangle\) is also observed in the SFs. The density of Shockley partial dislocations is observed to be the maximum in all the NWs.


dislocation density molecular dynamics slip system stacking fault 



The authors would like to acknowledge Department of Science and Technology, India, for their support (DST No: YSS/2014/000985).


  1. 1.
    C. Peng, Y. Zhong, Y. Lu, S. Narayanan, T. Zhu, and J. Lou, Strain Rate Dependent Mechanical Properties in Single Crystal Nickel Nanowires, Appl. Phys. Letts, 2013, 102, p 83102CrossRefGoogle Scholar
  2. 2.
    T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall, Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation, Phys. Rev. Lett., 2008, 100(2), p 1–4Google Scholar
  3. 3.
    P. Gupta, S. Pal, and N. Yedla, Molecular Dynamics Based Cohesive Zone Modeling of Al (metal)-Cu 50 Zr 50 (Metallic Glass) Interfacial Mechanical Behavior and Investigation of Dissipative Mechanisms, Mater. Des., 2016, 105, p 41–50CrossRefGoogle Scholar
  4. 4.
    G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, and P.M. Gullett, A Molecular Dynamics Study of Void Growth and Coalescence in Single Crystal Nickel, Int. J. Plast, 2006, 22(2), p 257–278CrossRefGoogle Scholar
  5. 5.
    D.K. Das and M.M. Ghosh, On Mechanical Properties of Graphene Sheet Estimated Using Molecular Dynamics Simulations, J. Mater. Eng. Perform., 2017, 26(9), p 4522–4532CrossRefGoogle Scholar
  6. 6.
    N. Yedla, P. Gupta, T.Y. Ng, and K.R. Geethalakshmi, Effect of Loading Direction and Defects on the Strength and Fracture Behavior of Biphenylene Based Graphene Monolayer, Mater. Chem. Phys., 2017, 202, p 127–135CrossRefGoogle Scholar
  7. 7.
    M. Grujicic, R. Yavari, J.S. Snipes, S. Ramaswami, T. Jiao, and R.J. Clifton, Experimental and Computational Study of the Shearing Resistance of Polyurea at High Pressures and High Strain Rates, J. Mater. Eng. Perform., 2015, 24(2), p 778–798CrossRefGoogle Scholar
  8. 8.
    H.S. Park, K. Gall, and J.A. Zimmerman, Deformation of FCC Nanowires by Twinning and Slip, J. Mech. Phys. Solids, 2006, 54(9), p 1862–1881. CrossRefGoogle Scholar
  9. 9.
    A. Movahedi-Rad and R. Alizadeh, Dependence of Strain Rate Sensitivity on the Slip System: A Molecular Dynamics Simulation, J. Mater. Eng. Perform., 2017, 26(11), p 5173–5179CrossRefGoogle Scholar
  10. 10.
    M.M. Ghosh, S. Ghosh, and S.K. Pabi, Effects of Particle Shape and Fluid Temperature on Heat-Transfer Characteristics of Nanofluids, J. Mater. Eng. Perform., 2013, 22(6), p 1525–1529CrossRefGoogle Scholar
  11. 11.
    H.Y. Song, J.J. Xu, Y.G. Zhang, S. Li, D.H. Wang, and Y.L. Li, Molecular Dynamics Study of Deformation Behavior of Crystalline Cu/amorphous Cu50Zr50 Nanolaminates, Mater. Des., 2017, 127, p 173–182CrossRefGoogle Scholar
  12. 12.
    F. Baras, V. Turlo, and O. Politano, Dissolution at Interfaces in Layered Solid-Liquid Thin Films: A Key Step in Joining Process, J. Mater. Eng. Perform., 2016, 25(8), p 3270–3274CrossRefGoogle Scholar
  13. 13.
    P.S. Branı, Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain—A MD Study - Branicio_Rino _ Phys Rev B 62 (2000) 16950, 2000, 62(24), p 950–955.Google Scholar
  14. 14.
    Y.H. Wen, Z.Z. Zhu, G.F. Shao, and R.Z. Zhu, The Uniaxial Tensile Deformation of Ni Nanowire: Atomic-Scale Computer Simulations, Phys. E Low-Dimens. Syst. Nanostruct., 2005, 27(1–2), p 113–120CrossRefGoogle Scholar
  15. 15.
    Y.H. Wen, Z.Z. Zhu, and R.Z. Zhu, Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects, Comput. Mater. Sci., 2008, 41(4), p 553–560CrossRefGoogle Scholar
  16. 16.
    D. Huang, Q. Zhang, and P. Qiao, Molecular Dynamics Evaluation of Strain Rate and Size Effects on Mechanical Properties of FCC Nickel Nanowires, Comput. Mater. Sci., 2011, 50(3), p 903–910CrossRefGoogle Scholar
  17. 17.
    W.D. Wang, C.L. Yi, and K.Q. Fan, Molecular Dynamics Study on Temperature and Strain Rate Dependences of Mechanical Tensile Properties of Ultrathin Nickel Nanowires, Trans. Nonferrous Met. Soc. China, 2013, 23(11), p 3353–3361. CrossRefGoogle Scholar
  18. 18.
    H.F. Zhan, Y.T. Gu, C. Yan, X.Q. Feng, and P.K.D.V. Yarlagadda, Numerical Exploration of Plastic Deformation Mechanisms of Copper Nanowires with Surface Defects, Comput. Mater. Sci., 2011, 50(12), p 3425–3430CrossRefGoogle Scholar
  19. 19.
    H. Zhan and Y. Gu, Atomistic Exploration of Deformation Properties of Copper Nanowires with Pre-Existing Defects, Comput. Model. Eng. Sci., 2011, 80(1), p 23–56Google Scholar
  20. 20.
    S.F. Ferdous and A. Adnan, Role of a Single Surface Vacancy on the Tensile Stress-Strain Relations of Single Crystal Ni Nanowire, Comput. Mater. Sci., 2014, 90, p 221–231. CrossRefGoogle Scholar
  21. 21.
    M. Makino, T. Tsuji, and N. Noda, MD Simulation of Atom-Order Void Formation in Ni Fcc Metal, Comput. Mech., 2000, 26(3), p 281–287. CrossRefGoogle Scholar
  22. 22.
    M.J. Buehler and H. Gao, Ultra-Large Scale Simulations of Dynamic Materials Failure, Handb. Theor. Comput. Nanotechnol., 2005, 10, p 1–41Google Scholar
  23. 23.
    M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang, Development of Interatomic Potentials Appropriate for Simulation of Liquid and Glass Properties of nizr2 Alloy, Philos. Mag., 2012, 92(35), p 4454–4469CrossRefGoogle Scholar
  24. 24.
    J.J. Bean and K.P. McKenna, Origin of Differences in the Excess Volume of Copper and Nickel Grain Boundaries, Acta Mater., 2016, 110, p 246–257CrossRefGoogle Scholar
  25. 25.
    S.M. Rassoulinejad-Mousavi, Y. Mao, and Y. Zhang, Evaluation of Copper, Aluminum, and Nickel Interatomic Potentials on Predicting the Elastic Properties, J. Appl. Phys., 2016, 119(24).Google Scholar
  26. 26.
    R. Rezaei, C. Deng, H. Tavakoli-Anbaran, and M. Shariati, Deformation Twinning-Mediated Pseudoelasticity in Metal–graphene Nanolayered Membrane, Philos. Mag. Lett., 2016, 96(8), p 322–329. CrossRefGoogle Scholar
  27. 27.
    W.J. Zhang, Z.L. Liu, and Y.F. Peng, Molecular Dynamics Simulations of the Melting Curves and Nucleation of Nickel Under Pressure, Phys. B Condens. Matter, 2014, 449, p 144–149. CrossRefGoogle Scholar
  28. 28.
    S. Plimpton, LAMMPS: Molecular Dynamics Simulator., 2011.
  29. 29.
    H. Liu and J. Zhou, Plasticity in Nanotwinned Polycrystalline Ni Nanowires Under Uniaxial Compression, Mater. Lett., 2016, 163, p 179–182. CrossRefGoogle Scholar
  30. 30.
    R. Cao and C. Deng, The Ultra-Small Strongest Grain Size in Nanocrystalline Ni Nanowires, Scr. Mater., 2015, 94, p 9–12. CrossRefGoogle Scholar
  31. 31.
    F. Sansoz and V. Dupont, Nanoindentation and Plasticity in Nanocrystalline Ni Nanowires: A Case Study in Size Effect Mitigation, Scr. Mater., 2010, 63(11), p 1136–1139. CrossRefGoogle Scholar
  32. 32.
    Y. Liu and J. Zhao, The Size Dependence of the Mechanical Properties and Breaking Behavior of Metallic Nanowires: A Statistical Description, Comput. Mater. Sci., 2011, 50(4), p 1418–1424. CrossRefGoogle Scholar
  33. 33.
    W.G. Hoover, Canonical Dynamics: Equilibrium Phase-Space Distributions, Phys. Rev. A, 1985, 31(3), p 1695CrossRefGoogle Scholar
  34. 34.
    A.R. Setoodeh and H. Attariani, Nanoscale Simulations of Bauschinger Effects on a Nickel Nanowire, Mater. Lett., 2008, 62(27), p 4266–4268CrossRefGoogle Scholar
  35. 35.
    W. Zhu, H. Wang, and W. Yang, Orientation- and Microstructure-Dependent Deformation in Metal Nanowires under Bending, Acta Mater., 2012, 60(20), p 7112–7122. CrossRefGoogle Scholar
  36. 36.
    J. Diao, K. Gall, M.L. Dunn, and J.A. Zimmerman, Atomistic Simulations of the Yielding of Gold Nanowires, Acta Mater., 2006, 54(3), p 643–653CrossRefGoogle Scholar
  37. 37.
    C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation Nucleation and Defect Structure During Surface Indentation, Phys. Rev. B Condens. Matter Mater. Phys, 1998, 58(17), p 11085–11088. CrossRefGoogle Scholar
  38. 38.
    A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18(1), p 15012. CrossRefGoogle Scholar
  39. 39.
    A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated Identification and Indexing of Dislocations in Crystal Interfaces, Model. Simul. Mater. Sci. Eng., 2012, 20(8), p 85007CrossRefGoogle Scholar
  40. 40.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York, 1983, p 697Google Scholar
  41. 41.
    E.A. Alfyorova and D.V. Lychagin, Self-Organization of Plastic Deformation and Deformation Relief in FCC Single Crystals, Mech. Mater., 2017, 2018(117), p 202–213Google Scholar
  42. 42.
    D.V. Lychagin, E.A. Alfyorova, and A.S. Tailashev, Misorientation Development During the Formation of Macrobands in the [001] Nickel Single Crystals, Russ. Phys. J., 2015, 58(5), p 717–723CrossRefGoogle Scholar
  43. 43.
    W.P. Wu and Z.Z. Yao, Molecular Dynamics Simulation of Stress Distribution and Microstructure Evolution Ahead of a Growing Crack in Single Crystal Nickel, Theor. Appl. Fract. Mech., 2012, 62(1), p 67–75. CrossRefGoogle Scholar
  44. 44.
    S. Brinckmann, R. Sivanesapillai, and A. Hartmaier, On the Formation of Vacancies by Edge Dislocation Dipole Annihilation in Fatigued Copper, Int. J. Fatigue, 2011, 33(10), p 1369–1375. CrossRefGoogle Scholar
  45. 45.
    J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982Google Scholar
  46. 46.
    G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, McGraw-Hill, New York, 1986Google Scholar
  47. 47.
    L. Smith, J.A. Zimmerman, L.M. Hale, and D. Farkas, Molecular Dynamics Study of Deformation and Fracture in a Tantalum Nano-Crystalline Thin Film, Model. Simul. Mater. Sci. Eng., 2014, 22(4).Google Scholar
  48. 48.
    D. Huang, Q. Zhang, and Y. Guo, Molecular Dynamics Simulation for Axial Tension Process of α-Fe and Ni Nano Wires, Ordnance Mater. Sci. Eng., 2006, 5, p 4Google Scholar
  49. 49.
    M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng, Deformation Twinning in Nanocrystalline Aluminum, Science, 2003, 300, p 1275–1277. CrossRefGoogle Scholar
  50. 50.
    D. Chen, J. Wang, T. Chen, and L. Shao, Defect Annihilation at Grain Boundaries in Alpha-Fe, Sci. Rep., 2013, 3(13), p 1–5Google Scholar
  51. 51.
    P.H. Sung and T.C. Chen, Studies of Crack Growth and Propagation of Single-Crystal Nickel by Molecular Dynamics, Comput. Mater. Sci., 2015, 102, p 151–158. CrossRefGoogle Scholar
  52. 52.
    J. Zhang and S. Ghosh, Molecular Dynamics Based Study and Characterization of Deformation Mechanisms Near a Crack in a Crystalline Material, J. Mech. Phys. Solids, 2013, 61(8), p 1670–1690. CrossRefGoogle Scholar
  53. 53.
    A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, and E. Bitzek, Atom Probe Informed Simulations of Dislocation-Precipitate Interactions Reveal the Importance of Local Interface Curvature, Acta Mater., 2015, 92, p 33–45CrossRefGoogle Scholar
  54. 54.
    G. Sainath and B.K. Choudhary, Molecular Dynamics Simulation of Twin Boundary Effect on Deformation of Cu Nanopillars, Phys. Lett. A, 2015, 379(34–35), p 1902–1905CrossRefGoogle Scholar
  55. 55.
    S. Zhang and Y. Wang, Molecular Dynamics Simulation of Tension-Compression Asymmetry in Plasticity of Fivefold Twinned Ag Nanopillars, Phys. Lett. Sect. A Gen. At. Solid State Phys., 2015, 379(6), p 603–606Google Scholar
  56. 56.
    Y. Zhang, S. Jiang, X. Zhu, and Y. Zhao, Dislocation Mechanism of Void Growth at Twin Boundary of Nanotwinned Nickel Based on Molecular Dynamics Simulation, Phys. Lett. Sect. A Gen. At. Solid State Phys., 2016, 380(35), p 2757–2761. CrossRefGoogle Scholar
  57. 57.
    Y. Zhang, S. Jiang, X. Zhu, and Y. Zhao, Influence of Void Density on Dislocation Mechanisms of Void Shrinkage in Nickel Single Crystal Based on Molecular Dynamics Simulation, Phys. E Low-Dimens. Syst. Nanostruct., 2017, 90(March), p 90–97. CrossRefGoogle Scholar
  58. 58.
    S. Aubry and D.A. Hughes, Reductions in Stacking Fault Widths in Fcc Crystals: Semiempirical Calculations, Phys. Rev. B Condens. Matter Mater. Phys., 2006, 73(22), p 1–15CrossRefGoogle Scholar
  59. 59.
    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter, Dislocation-Dislocation and Dislocation-Twin Reactions in Nanocrystalline Al by Molecular Dynamics Simulation, Acta Mater., 2003, 51(14), p 4135–4147. CrossRefGoogle Scholar
  60. 60.
    X. Zhao, C. Lu, A.K. Tieu, L. Pei, L. Zhang, L. Su, and L. Zhan, Deformation Mechanisms in Nanotwinned Copper by Molecular Dynamics Simulation, Mater. Sci. Eng. A, 2016, 2017(687), p 343–351Google Scholar
  61. 61.
    X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, and H.F. Xu, Formation Mechanism of Wide Stacking Faults in Nanocrystalline Al, Appl. Phys. Lett., 2004, 84(18), p 3564–3566CrossRefGoogle Scholar
  62. 62.
    A. Hunter and I.J. Beyerlein, Stacking Fault Emission from Grain Boundaries: Material Dependencies and Grain Size Effects, Mater. Sci. Eng. A, 2014, 600, p 200–210. CrossRefGoogle Scholar
  63. 63.
    C.B. Carter and S.M. Holmes, The Stacking Fault Energy of Nickel, Philos. Mag., 1977, 35(5), p 1161–1172CrossRefGoogle Scholar
  64. 64.
    D. Hull and D.J. Bacon, Chapter 5 - Dislocations in Face-Centered Cubic Metals, Introduction to Dislocations, D. Hull and D.J. Bacon, Eds., Fifth Edit, (Oxford), Butterworth-Heinemann, 2011, p 85–107,
  65. 65.
    J.A. Zimmerman, H. Gao, and F.F. Abraham, Generalized Stacking Fault Energies for Embedded Atom FCC Metals, Model. Simul. Mater. Sci. Eng., 2000, 8, p 103–115CrossRefGoogle Scholar
  66. 66.
    Z.Q. Wang, I.J. Beyerlein, and R. LeSar, Dislocation Motion in High Strain-Rate Deformation, Philos. Mag., 2007, 87(16), p 2263–2279CrossRefGoogle Scholar
  67. 67.
    Q. Kun, Y. Li-Ming, and H. Shi-Sheng, Mechanism of Strain Rate Effect Based on Dislocation Theory, Chin. Phys. Lett., 2009, 26(3), p 36103CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Krishna Chaitanya Katakam
    • 1
  • Pradeep Gupta
    • 1
  • Natraj Yedla
    • 1
    Email author
  1. 1.Computational Materials Engineering Group, Department of Metallurgical and Materials EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations