Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 423–430 | Cite as

Effect of Sintering Atmosphere on the Synthesis Process, Electrical and Mechanical Properties of NiFe2O4/Nano-TiN Ceramics

  • Bin Wang
  • Jinjing DuEmail author
  • Shoukun Gao
  • Zhao Fang
  • Jun Zhu
  • Linbo Li
Article
  • 26 Downloads

Abstract

NiFe2O4/nano-TiN ceramics were fabricated by a two-step cold-pressing sintering process. Effect of sintering atmosphere (air, nitrogen, argon) on the synthesis process of NiFe2O4/nano-TiN ceramics was investigated. The DSC-TG and XRD analysis results indicated that besides principal phases of NiO and NiFe2O4, new-phase Ni3TiO5 formed in the sintered ceramics under the three sintering atmospheres, and metallic phase including iron and nickel appeared in the sintered samples with inert gas (nitrogen, argon) sintering condition. Microstructure analysis results showed that considerable quantity of micropores appeared in the ceramic samples sintered under inert gases (argon, nitrogen), but lower porosity (3.0, 3.6%) and higher densities (4.78 g/cm3, 4.51 g/cm3) can be obtained, comparing to the both values (14.4%, 4.17 g/cm3) for the ceramic samples sintered under air atmosphere. Besides, the average bending strength and elastic modulus of the samples sintered under argon is 113.75 MPa and 7.13GPa, which is higher than that of 75.12 MPa, 5.42GPa and 91.96 MPa, 6.26GPa for the samples synthesized under air and nitrogen, separately. When changing sintering atmosphere from air to inert gases (argon, nitrogen), the fracture model of the 4 wt.%nano-TiN/NiFe2O4 ceramics synthesized at 1400 °C for 4 h transformed from intergranular fracture to intergranular-transgranular fracture.

Keywords

mechanical performance microstructure nano-size titanium nitride NiFe2O4 ferrite phase transformation sintering atmosphere 

Notes

Acknowledgment

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51504177, 51574191, 51404183, 51404181), Foundation of Shaanxi Educational Committee (No. 14JK1425).

References

  1. 1.
    I. Galasiu and R. Galasiu, Aluminium Electrolysis with Inert Anodes and Wettable Cathodes and with Low Energy Consumption, Molten Salts Chemistry and Technology, 2014, p 27–37Google Scholar
  2. 2.
    D.H. Wang and W. Xiao, Inert Anode Development for High-temperature Molten Salts, in Molten Salts Chemistry: From Lab to Applications, 2013, NSFC 2015, p 171–186Google Scholar
  3. 3.
    S.P. Ray, Inert Anodes for Hall Cells, TMS, Warrendale, PA, 1986, p 287–298Google Scholar
  4. 4.
    X.H. Cao, J.H. Meng, F. Mi, Z.H. Zhang, and J. Sun, Preparation and Magnetic Property Investigation of a Nickel Spinel Ferrite-Coated Tetrapod-Like ZnO Composite, Solid State Commun., 2011, 151(9), p 678–682CrossRefGoogle Scholar
  5. 5.
    L.M. Zhang, X.H. Huang, and X.L. Song, Materials Science Fundamentals, Wuhan University of Technology Press, Wuhan, 2008 (in Chinese)Google Scholar
  6. 6.
    P. Zarrabian, M. Kalantar, and S.S. Ghasemi, Fabrication and Characterization of Nickel Ferrite Based Inert Anodes for Aluminum Electrolysis, J. Mater. Eng. Perform., 2014, 23(5), p 1656–1664CrossRefGoogle Scholar
  7. 7.
    L. Ma, K.C. Zhou, Z.Y. Li, Q.P. Wei, and L. Zhang, Hot Corrosion of A Novel NiO/NiFe2O4 Composite Coating Thermally Converted from the Electroplated Ni-Fe Alloy, Corros. Sci., 2011, 53(11), p 3712–3724CrossRefGoogle Scholar
  8. 8.
    Z.L. Tian, Y.Q. Lai, J. Li, and Y.X. Liu, Effect of Ni Content on Corrosion Behavior of Ni/(10NiO-90NiFe2O4) Cermet Inert Anode, Trans. Nonferrous Metal. Soc., 2008, 18(2), p 361–365CrossRefGoogle Scholar
  9. 9.
    H.B. He, H.N. Xiao, and K.C. Zhou, Effect of Additive BaO on Corrosion Resistance of xCu/(10NiO-NiFe2O4) Cermet Inert Anodes for Aluminum Electrolysis, Trans. Nonferrous Metal. Soc., 2011, 21, p 102–108CrossRefGoogle Scholar
  10. 10.
    H.B. He, K.C. Zhou, Z.Y. Li, and B.Y. Huang, Effect of BaO Addition on Electric Conductivity of xCu/10NiO-NiFe2O4 Cermets, Trans. Nonferrous Metal. Soc., 2008, 18, p 1134–1138CrossRefGoogle Scholar
  11. 11.
    J.J. Du, G.C. Yao, Y.H. Liu, J. Ma, and G.Y. Zu, Influence of V2O5 as an Effective Dopant on the Sintering Behavior and Magnetic Properties of NiFe2O4 Ferrite Ceramics, Ceram. Int., 2012, 38(2), p 1707–1711CrossRefGoogle Scholar
  12. 12.
    J. Ma, L. Bao, G.C. Yao, Y.H. Liu, X. Zhang, and L.S. Liang, Effect of MnO2 Addition on Properties of NiFe2O4-Based Cermets, Ceram. Int., 2011, 37(8), p 3381–3387CrossRefGoogle Scholar
  13. 13.
    X.P. Gan, Z.Y. Li, Z.Q. Tan, and K.C. Zhou, Influence of Yb2O3 Addition on Microstructure and Corrosion Resistance of 10Cu/(10NiO-NiFe2O4) Cermets, Trans. Nonferrous Metal. Soc., 2009, 19, p 1514–1519CrossRefGoogle Scholar
  14. 14.
    B. Wang, J.J. Du, Y.H. Liu, and G.C. Yao, Effect of TiO2 Doping on the Sintering Process, Mechanical and Magnetic Properties of NiFe2O4 Ferrite Ceramics, Int. J. Appl. Ceram. Technol., 2015, 12(3), p 658–664CrossRefGoogle Scholar
  15. 15.
    Q.Q. Lin, T. Jiang, S. Zhao, and Y.P. Long, High Temperature Oxidation Resistance of 17Ni/(10NiO-NiFe2O4) Cermet with TiO2, J. Funct. Mater., 2014, 45(17), p 17079–17082 (in Chinese)Google Scholar
  16. 16.
    J.H. Xi, Y.J. Xie, G.C. Yao, and Y.H. Liu, Effect of Additive on Corrosion Resistance of NiFe2O4 Ceramics as Inert Anodes, Trans. Nonferrous Metal. Soc., 2008, 18, p 356–360CrossRefGoogle Scholar
  17. 17.
    L. Zhang and W.L. Jiao, Preparation and Performance of ZnO Nanowires Modified Carbon Fibers Reinforced NiFe2O4 Ceramic Matrix Composite, J. Alloy. Compd., 2013, 581, p 11–15CrossRefGoogle Scholar
  18. 18.
    J.J. Du, G.C. Yao, Z.S. Hua, X.L. Long, and B. Wang, Microstructure, Mechanical Properties, and Pyroconductivity of NiFe2O4 Composite Reinforced with ZrO2 Fibers, J. Mater. Eng. Perform., 2013, 22(6), p 1776–1782CrossRefGoogle Scholar
  19. 19.
    Y.Q. Lai, Z.L. Tian, J. Li, S.L. Ye, and Y.X. Liu, Preliminary Testing of NiFe2O4-NiO-Ni Cermet as Inert Anode in Na3AlF6-AlF3 Melts, Trans. Nonferrous Metal. Soc., 2006, 16(3), p 654–658CrossRefGoogle Scholar
  20. 20.
    H.M. Wu, Z.Y. Li, X.P. Gan, and K.C. Zhou, Effect of CoO Doping on Electrical Conductivity of 15(20Ni-Cu)/(NiO-NiFe2O4) Based Cermets, Mater. Sci. Eng. Powder Metall., 2011, 16(2), p 206–211 (in Chinese)Google Scholar
  21. 21.
    J.H. Xi, Y.J. Xie, and S.R. Ge, Preparation and Properties of Gradient-Network Ag/NiFe2O4 Cermets Inert Anodes Used in Aluminum Electrolysis, J. Chin. Ceram. Soc., 2010, 38(2), p 241–245 (in Chinese)Google Scholar
  22. 22.
    J.H. Xi, Study on Preparation Inert Anodes Used in Aluminum Electrolysis by Two-steps Sintering, Shenyang, 2006 (in Chinese) Google Scholar
  23. 23.
    C.F. Wang, S.Y. Chiou, K.L. Ou, and Z.T. Cai, Optimal Process Parameters for 3Y-TZP/TiN Conductive Polycrystal by Taguchi Method, J. Inorg. Mater., 2012, 27(5), p 529–534 (in Chinese)CrossRefGoogle Scholar
  24. 24.
    J. Zhu, C.H. Li, K. Liu, Y.S. Shi, Z.Y. He, and Q.F. Zhang, Electrical Properties of TiN/AlN Composite Ceramic, Semicond. Technol., 2014, 39(3), p 204–209 (in Chinese)Google Scholar
  25. 25.
    L.J. Zhang, H. Yang, X.Z. Guo, J.C. Shen, and X.Y. Zhu, Preparation and Properties of Silicon Carbide Ceramics Enhanced by TiN Nanoparticles and SiC Whiskers, Scr. Mater., 2011, 65, p 186–189CrossRefGoogle Scholar
  26. 26.
    X.Z. Guo, H. Yang, X.Y. Zhu, and L.J. Zhang, Preparation and Properties of Nano-SiC-based Ceramic Composites Containing Nano-TiN, Scr. Mater., 2013, 68, p 281–284CrossRefGoogle Scholar
  27. 27.
    J.G. Li, L. Gao, and J.K. Guo, Mechanical Properties and Electrical Conductivity of TiN-Al2O3 Nanocomposites, J. Eur. Ceram. Soc., 2003, 23, p 69–74CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Bin Wang
    • 1
  • Jinjing Du
    • 1
    Email author
  • Shoukun Gao
    • 1
  • Zhao Fang
    • 1
  • Jun Zhu
    • 1
  • Linbo Li
    • 1
  1. 1.School of Metallurgy EngineeringXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations