Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 211–220 | Cite as

Surface Self-nanocrystallization in Copper Electroforming

  • Chunjian Shen
  • Zengwei Zhu
  • Di ZhuEmail author


The coarse columnar grain layer generated on top of electroforming deposits leads to low surface strength and poor global performance of deposits. Here, we introduce a particle abrasive-induced surface self-nanocrystallization process, which is a part of the electroforming process rather than involving complex poststeps using special equipment. It can generate a thickness-controllable surface nanocrystalline layer on top of copper deposits for performance enhancement. In this study, surface nanocrystalline layers of 10, 20, 50 and 120 μm were fabricated on top of 500-μm-thick copper deposits. The tensile strength of copper deposits increases from 234 to 246, 330, 383 and 421 MPa, with a corresponding decrease in elongation from 26 to 25, 24, 15 and 6%, respectively. The moderately thick surface nanocrystalline layer makes the copper deposits exhibit good comprehensive mechanical properties. In addition, the surface self-nanocrystallization also makes the copper deposits show a better corrosion resistance in a neutral aqueous 0.1 M NaCl solution. This study aims to promote a convenient, controllable and reliable surface self-nanocrystallization process in electroforming for improving the global performance of deposits.


abrasive induced corrosion resistance electroforming mechanical properties surface self-nanocrystallization 



Authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51475239) and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology.


  1. 1.
    S. Hernandez, T. Engelberg, D.L. Scenini et al., Manufacturing Technology for Implementing Geological Disposal: Electroforming of Copper Canisters, Mineral. Mag., 2016, 79, p 1521–1528CrossRefGoogle Scholar
  2. 2.
    G. Chatzipirpiridis, O. Ergeneman, J. Pokki et al., Electroforming of Implantable Tubular Magnetic Microrobots for Wireless Ophthalmologic Applications, Adv. Healthc. Mater., 2015, 4, p 209–214CrossRefGoogle Scholar
  3. 3.
    M.K. Hota, D.H. Nagaraju, M.N. Hedhili et al., Electroforming Free Resistive Switching Memory in Two-dimensional VOx Nanosheets, Appl. Phys. Lett., 2015, 31, p 666Google Scholar
  4. 4.
    Q.D. Cao, L. Fang, J.M. Lv et al., Effects of Pulse Reverse Electroforming Parameters on the Thickness Uniformity of Electroformed Copper Foil, Trans. Inst. Met. Finish., 2018, 96, p 108–112CrossRefGoogle Scholar
  5. 5.
    F. Ebrahimi, G.R. Bourne, M.S. Kelly et al., Mechanical Properties of Nanocrystalline Nickel Produced by Electrodeposition, Nanostruct. Mater., 1999, 11, p 343–350CrossRefGoogle Scholar
  6. 6.
    H.D. Merchant, Defect structure, morphology and properties of deposits, TMS Publication, Warrendale, 1995Google Scholar
  7. 7.
    F. Ebrahimi and Z. Ahmed, The Effect of Substrate on the Microstructure and Tensile Properties of Electrodeposited Nanocrystalline Nickel, Mater. Charact., 2002, 49, p 373–379CrossRefGoogle Scholar
  8. 8.
    D.V. Nazarov, E.G. Zemtsova, A.Y. Solokhin et al., Modification of the Surface Topography and Composition of Ultrafine and Coarse Grained Titanium by Chemical Etching, Nanomaterials-Basel., 2017, 7, p 15CrossRefGoogle Scholar
  9. 9.
    Z. Shi, D. Wang, and Z. Ding, Nanocrystalline Ni-B Coating Surface Strengthening Pure Copper, Appl. Surf. Sci., 2006, 253, p 1051–1054CrossRefGoogle Scholar
  10. 10.
    B.A. Bouwhuis, T. Ronis, J.L. Mccrea et al., Structural Nanocrystalline Ni Coatings on periodic Cellular Steel, Compos. Sci. Technol., 2009, 69, p 385–390CrossRefGoogle Scholar
  11. 11.
    T. Leitner, S. Pillmeier, K.S. Kormout et al., Simultaneous Enhancement of Strength and Fatigue Crack Growth Behavior of Nanocrystalline Steels by Annealing, Scr. Mater., 2017, 2017(139), p 39–43CrossRefGoogle Scholar
  12. 12.
    Y. Wang, G. Cheng, S.L. Tay et al., Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings, Materials, 2017, 10, p 932CrossRefGoogle Scholar
  13. 13.
    M. Kanetake, Y. Takigawa, T. Uesugi et al., Fabrication of Electrodeposited Permalloys with High Strength and High Ductility, Mater. Trans., 2018, 59, p 598–601CrossRefGoogle Scholar
  14. 14.
    S. Bahl, S. Suwas, T. Ungàr et al., Elucidating Microstructural Evolution and Strengthening Mechanisms in Nanocrystalline Surface Induced by Surface Mechanical Attrition Treatment of Stainless Steel, Acta Mater., 2017, 122, p 138–151CrossRefGoogle Scholar
  15. 15.
    A. Amanov, B. Urmanov, T. Amanov et al., Strengthening of Ti-6Al-4V Alloy by High Temperature Ultrasonic Nanocrystal Surface Modification Technique, Mater. Lett., 2017, 196, p 198–201CrossRefGoogle Scholar
  16. 16.
    C. Wu, Y. Hong, W. Chen et al., A Double Strengthened Surface Layer Fabricated by Nitro-Chromizing on Carbon Steel, Surf. Coat. Technol., 2016, 298, p 83–92CrossRefGoogle Scholar
  17. 17.
    A.A. Ribeiro, L.G. Vaz, A.C. Guastaldi et al., Adhesion Strength Characterization of PVDF/HA Coating on cp Ti Surface Modified by Laser Beam Irradiation, Appl. Surf. Sci., 2012, 258, p 10110–10114CrossRefGoogle Scholar
  18. 18.
    H. Wang, R. Liu, W.Q. Jiang et al., A Novel Method for Improving the Adhesion Strength of the Electrodeposited Ni Films in MEMS, Appl. Surf. Sci., 2011, 257, p 2203–2207CrossRefGoogle Scholar
  19. 19.
    K. Lu, Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept Behind a New Approach, J. Mater. Sci. Technol., 1999, 15(1999), p 193–197Google Scholar
  20. 20.
    N.R. Tao, M.L. Sui, J. Lu et al., Surface Nanocrystallization of Iron Induced by Ultrasonic Shot Peening, Nanostruct. Mater., 1999, 1999(11), p 433–440CrossRefGoogle Scholar
  21. 21.
    G. Liu, S.C. Wang, X.F. Lou et al., Low Carbon Steel with Nanostructured Surface Layer Induced by High-energy Shot Peening, Scr. Mater., 2001, 44, p 1791–1795CrossRefGoogle Scholar
  22. 22.
    Q. Liao, W. Li, H. Liu et al., Fabrication of Nanostructured Electroforming Copper Layer by Means of an Ultrasonic-assisted Mechanical Treatment, Chin. J. Aeronaut., 2010, 23, p 599–603CrossRefGoogle Scholar
  23. 23.
    Z.W. Zhu, D. Zhu, and N.S. Qu, Effects of Simultaneous Polishing on Electrodeposited Nanocrystalline Nickel, Mat. Sci. Eng. A-Struct., 2011, 528, p 7461–7464CrossRefGoogle Scholar
  24. 24.
    Z.W. Zhu, D. Zhu, and N.S. Qu, Synthesis of Smooth Copper Deposits by Simultaneous Electroforming and Polishing Process, Mater. Lett., 2008, 62, p 1283–1286CrossRefGoogle Scholar
  25. 25.
    H. Jia, X. Liu, and Z. Li, The Effect of Grain Size on the Deformation Mechanisms and Mechanical Properties of Polycrystalline TiN: A Molecular Dynamics Study, Comput. Mater. Sci., 2018, 143, p 189–194CrossRefGoogle Scholar
  26. 26.
    H. Sakai, T. Yokota, T. Asai, et al, High Tensile Strength Electrodeposited Copper Foil and Process of Electrodepositing Thereof: US, US 5958209 A. 1999Google Scholar
  27. 27.
    H. Zhang, Z. Jiang, and Y. Qiang, Microstructure and Tensile Deformation of Nanocrystalline Cu Produced by Pulse Electrodeposition, Mater. Sci. Eng. A-Struct., 2009, 517, p 316–320CrossRefGoogle Scholar
  28. 28.
    C.J. Youngdahl, J.R. Weertman, R.C. Hugo et al., Deformation Behavior in Nanocrystalline Copper, Scr. Mater., 2001, 44, p 1475–1478CrossRefGoogle Scholar
  29. 29.
    L. Wang, J. Zhang, Y. Gao et al., Grain Size Effect in Corrosion Behavior of Electrodeposited Nanocrystalline Ni Coatings in Alkaline Solution, Scr. Mater., 2006, 55, p 657–660CrossRefGoogle Scholar
  30. 30.
    L. Wang, Y. Lin, Z. Zeng et al., Electrochemical Corrosion Behavior of Nanocrystalline Co Coatings Explained by Higher Grain Boundary Density, Electrochim. Acta, 2007, 52, p 4342–4350CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Jiangsu Key Laboratory of Precision and Micro-Manufacturing TechnologyNanjingChina

Personalised recommendations