Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 200–210 | Cite as

Effect of Combined Rolling–ECAP on Ultrafine-Grained Structure and Properties in 6063 Al Alloy

  • Abdrakhman NaizabekovEmail author
  • Sergey Lezhnev
  • Evgeniy Panin
  • Irina Volokitina
  • Alexandr Arbuz
  • Toncho Koinov
  • Igor Mazur


Grain structure and mechanical properties of 6063 Al alloy subjected to one, two and three passes via combined rolling–ECAP at room temperature were investigated. The yield strength (196 MPa) and tensile strength (242 MPa) after three passes increased by 3.7 times and three times, respectively, relative to the initial annealed alloy (YS: 53 MPa, UTS: 82 MPa). Heat treatment comprising homogenizing annealing (600 °C, 15 min), water quenching from 520 °C and reheating to 100 °C before each pass led to ultrafine grains (600-800 nm) and high yield strength (245 MPa) and tensile strength (277 MPa). The three-pass combined rolling–ECAP process in conjunction with a suitable heat treatment is an effective way to form UFG structure and improved mechanical properties in 6063 Al alloy.


aluminum alloy 6063 combined process “rolling–ECAP” equal-channel angular pressing mechanical properties microstructure severe plastic deformation ultrafine-grained materials 


  1. 1.
    Y. Estrin and A. Vinogradov, Extreme Grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science, Acta Mater., 2013, 61(3), p 782–817CrossRefGoogle Scholar
  2. 2.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and Post-Dynamic Recrystallization Under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., 2014, 60, p 130–207CrossRefGoogle Scholar
  3. 3.
    T.G. Langdon, Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties Through Grain Refinement, Acta Mater., 2013, 61(19), p 7035–7059CrossRefGoogle Scholar
  4. 4.
    R.Z. Valiev, Superior Strength in Ultrafine-Grained Materials Produced by SPD Processing, Mater. Trans., 2014, 55(1), p 13–18CrossRefGoogle Scholar
  5. 5.
    I. Sabirov, M.Y. Murashkin, and R.Z. Valiev, Nanostructured Aluminium Alloys Produced by Severe Plastic Deformation: New Horizons in Development, Mater. Sci. Eng. A, 2013, 560, p 1–24CrossRefGoogle Scholar
  6. 6.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later, JOM, 2016, 68(4), p 1216–1226CrossRefGoogle Scholar
  7. 7.
    T.G. Langdon, The Characteristics of Grain Refinement in Materials Processed by Severe Plastic Deformation, Rev. Adv. Mater. Sci., 2006, 13, p 6–14Google Scholar
  8. 8.
    L.S. Toth and C. Gu, Ultrafine-Grain Metals by Severe Plastic Deformation, Mater. Charact., 2014, 92, p 1–14CrossRefGoogle Scholar
  9. 9.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater Sci., 2000, 45(2), p 103–189CrossRefGoogle Scholar
  10. 10.
    M. Jahedi, M. Knezevic, and M.H. Paydar, High-Pressure Double Torsion as a Severe Plastic Deformation Process: Experimental Procedure and Finite Element Modeling, J. Mater. Eng. Perform., 2015, 24(4), p 1471–1482CrossRefGoogle Scholar
  11. 11.
    J. Straska, M. Janecek, J. Gubicza, T. Krajnak, E.Y. Yoon, and H.S. Kim, Evolution of Microstructure and Hardness in AZ31 Alloy Processed by High Pressure Torsion, Mater. Sci. Eng. A, 2015, 625, p 98–106CrossRefGoogle Scholar
  12. 12.
    A. Alhamidi and Z. Horita, Grain Refinement and High Strain Rate Superplasticity in Alumunium 2024 Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2015, 622, p 139–145CrossRefGoogle Scholar
  13. 13.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981CrossRefGoogle Scholar
  14. 14.
    M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park, Microstructure and Mechanical Properties of Al-7075 Alloy Processed by Equal Channel Angular Pressing Combined with Aging Treatment, Mater. Des., 2014, 57, p 250–257CrossRefGoogle Scholar
  15. 15.
    X. Zhang, X. Liu, J. Wang, and Y. Cheng, Effect of Route on Tensile Anisotropy in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2016, 676, p 65–72CrossRefGoogle Scholar
  16. 16.
    W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du, and J. Hu, Microstructure and Tensile Properties of Cu-Al Alloys Processed by ECAP and Rolling at Cryogenic Temperature, J. Alloys Compd., 2016, 678, p 506–510CrossRefGoogle Scholar
  17. 17.
    M. Vaseghi, H.S. Kim, A.K. Taheri, and A. Momeni, Inhomogeneity Through Warm Equal Channel Angular Pressing, J. Mater. Eng. Perform., 2013, 22(6), p 1666–1671CrossRefGoogle Scholar
  18. 18.
    A. Jaeger and V. Gaertnerova, Equal Channel Angular Pressing of Magnesium at Room Temperature: The Effect of Processing Route on Microstructure and Texture, Philos. Mag. Lett., 2012, 92(8), p 384–390CrossRefGoogle Scholar
  19. 19.
    X. Zhao, N. Chen, and N. Zhao, Numerical Simulation of Equal Channel Angular Pressing for Multi-Pass in Different Routes, Appl. Mech. Mater., 2012, 268–270, p 373–377CrossRefGoogle Scholar
  20. 20.
    M. Gzyl, A. Rosochowski, E. Yakushina, P. Wood, and L. Olejnik, Route Effects in I-ECAP of AZ31B Magnesium Alloy, Key Eng. Mater., 2013, 554–557, p 876–884CrossRefGoogle Scholar
  21. 21.
    G.I. Raab, G.V. Kulyasov, V.A. Polozovsky, R.Z. Valiev, Уcтpoйcтвo для oбpaбoтки мeтaллoв дaвлeниeм (A Device for Processing of Metals by Pressure), RU Patent 2,181,314 (2002). (in Russian)Google Scholar
  22. 22.
    A.B. Naizabekov, S.N. Lezhnev, and I.E. Volokitina, Change in Copper Microstructure and Mechanical Properties with Deformation in an Equal Channel Stepped Die, Met. Sci. Heat Treat., 2015, 57(5–6), p 254–260CrossRefGoogle Scholar
  23. 23.
    D. Green, The continuous extrusion forming of wire sections, TRG Report 2364 (S), 1972.Google Scholar
  24. 24.
    R.G. Chembarisova and I.V. Aleksandrov, Simulation of the Elastoplastic Behavior of Grade-4 Ti in the ECAP-C Process, Met. Sci. Heat Treat., 2016, 58(3–4), p 236–244CrossRefGoogle Scholar
  25. 25.
    D.V. Gunderov, A.V. Polyakov, I.P. Semenova, G.I. Raab, A.A. Churakova, E.I. Gimaltdinova et al., Evolution of Microstructure, Macrotexture and Mechanical Properties of Commercially Pure Ti During ECAP-Conform Processing and Drawing, Mater. Sci. Eng. A, 2013, 562, p 128–136CrossRefGoogle Scholar
  26. 26.
    G.I. Raab, E.I. Fakhretdinova, R.Z. Valiev, L.P. Trifonenkov, and V.F. Frolov, Computer Study of the Effect of Tooling Geometry on Deformation Parameters in the Plastic Shaping of Aluminum Wire Rod by Multi-ECAP-Conform, Metallurgist, 2016, 59(11–12), p 1007–1014CrossRefGoogle Scholar
  27. 27.
    C. Xu, S. Schroeder, P.B. Berbon, and T.G. Langdon, Principles of ECAP-Conform as a Continuous Process for Achieving Grain Refinement: Application to an Aluminum Alloy, Acta Mater., 2010, 58(4), p 1379–1386CrossRefGoogle Scholar
  28. 28.
    M. Duchek, T. Kubina, J. Hodek, and J. Dlouhy, Development of the Production of Ultrafine-Grained Titanium with the Conform Equipment, Mater. Tehnol., 2013, 47(4), p 515–518Google Scholar
  29. 29.
    J. Hodek, T. Kubina, J. Dlouhy, FEM Model and Experimental Production of Titanium Rods Using Conform Machine, in 22nd International Conference on Metallurgy And Materials (METAL 2013), pp. 347–351Google Scholar
  30. 30.
    I.P. Semenova, A.V. Polyakov, G.I. Raab, T.C. Lowe, and R.Z. Valiev, Enhanced Fatigue Properties of Ultrafine-Grained Ti Rods Processed by ECAP-Conform, J. Mater. Sci., 2012, 47(22), p 7777–7781CrossRefGoogle Scholar
  31. 31.
    A. Naizabekov, S. Lezhnev, Mathematical modeling of equal-channel angled drawing in step tool, in 21st International Conference on Metallurgy and Materials (METAL 2012), pp. 453–460Google Scholar
  32. 32.
    A. Volokitin, A. Naizabekov, S. Lezhnev, Research of a new method of deformation—”pressing–drawing” on mechanical properties of steel wire, in 22nd International Conference on Metallurgy And Materials (METAL 2013), pp. 376–379Google Scholar
  33. 33.
    S. Lezhnev, A. Naizabekov, A. Volokitin, and I. Volokitina, New Combined Process Pressing–Drawing and Impact on Properties of Deformable Aluminum Wire, Procedia Eng., 2014, 81, p 1505–1510CrossRefGoogle Scholar
  34. 34.
    N.V. Lopatin, G.A. Salishchev, and S.P. Galkin, Mathematical Modeling of Radial-Shear Rolling of the VT6 Titanium Alloy Under Conditions of Formation of a Globular Structure, Russ. J. Non-Ferrous Met., 2011, 52(5), p 442–447CrossRefGoogle Scholar
  35. 35.
    A.B. Naizabekov, S.N. Lezhnev, H. Dyja, T. Bajor, K. Tsay, A. Arbuz et al., The Effect of Cross Rolling on the Microstructure of Ferrous and Non-ferrous Metals and Alloys, Metalurgija, 2017, 56(1–2), p 199–202Google Scholar
  36. 36.
    A. Naizabekov, S. Lezhnev, A. Arbuz, and E. Panin, Combined process “helical rolling–pressing” and its effect on the microstructure of ferrous and non-ferrous materials, Metall. Res. Technol., 2018, 115(2), p 213CrossRefGoogle Scholar
  37. 37.
    I.P. Mazur, A.B. Naizabekov, S.N. Lezhnev, E.A. Panin, R.O. Vedichshev, Уcтpoйcтвo для нeпpepывнoгo пpeccoвaния мeтaллoв и cплaвoв (Device for Continuous Pressing of Metals and Alloys), Patent of Russian Federation No. 2629134 (C1), 2017, bulletin No. 24.Google Scholar
  38. 38.
    A. Naizabekov, S. Lezhnev, E. Panin, and I. Volokitina, New combined technology of deformation “rolling-equal channel angular pressing”, allowing to obtain metals and alloys with sub-ultra-fine-grained structure, Severe Plastic Deformation Techniques, M. Cabibbo, Ed., InTech, Rijeka, 2017, CrossRefGoogle Scholar
  39. 39.
    A.P. Grudev, Teopия пpoкaтки (Rolling theory), Intermet Engineering, Moscow, 2001Google Scholar
  40. 40.
    V.L. Kolmogorov, Mexaникa oбpaбoтки мeтaллoв дaвлeниeм (Mechanics of metal forming), USTU-UPI, Ekaterinburg, 2001Google Scholar
  41. 41.
    ASM International, ASM Metals Handbook Volume 12: Fractography, ASM International, Cleveland, 2002Google Scholar
  42. 42.
    P.Y. Bryantsev, Investigation and optimization of heat treatment of ingots of alloys of the system Al-Mg-Si. Dissertation on competition of a scientific degree of candidate of technical Sciences, Moscow, 2007Google Scholar
  43. 43.
    I. Sabirov, M.T. Perez-Prado, M. Murashkin, J.M. Molina-Aldareguia, E.V. Bobruk, N.F. Yunusova et al., Application of Equal Channel Angular Pressing with Parallel Channels for Grain Refinement in Aluminium Alloys and its Effect on Deformation Behavior, Int. J. Mater. Form., 2010, 3(1), p 411–414CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Abdrakhman Naizabekov
    • 1
    Email author
  • Sergey Lezhnev
    • 1
  • Evgeniy Panin
    • 2
  • Irina Volokitina
    • 2
  • Alexandr Arbuz
    • 2
  • Toncho Koinov
    • 3
  • Igor Mazur
    • 4
  1. 1.Rudny Industrial InstituteRudnyKazakhstan
  2. 2.Karaganda State Industrial UniversityTemirtauKazakhstan
  3. 3.University of Chemical Technology and MetallurgySofiaBulgaria
  4. 4.Lipetsk State Technical UniversityLipetskRussia

Personalised recommendations