Advertisement

Influence of Ca and Sr Addition on Impression Creep Behavior of Mg-4Al-RE Alloy

  • Yaocheng Zhang
  • Li Yang
  • Chenglin Ge
  • Song Pang
  • Xiaopin Wang
  • Zhiwei Zhang
  • Zhaoxia Han
Article
  • 16 Downloads

Abstract

The impression creep behavior of Mg-4Al-RE-0.8Ca-0.2Sr (AEXJ4110) alloy was investigated under the applied stresses of 55, 75, 95 MPa and the temperatures of 398, 423, 448 K on a special apparatus. The results showed that the microstructure of AEXJ4110 alloy consisted of acicular Al11La3, granular Al2La, bone shape Al2Ca and fish-bone shape Al4Sr. The impression creep resistance of AE41 alloy was improved by adding Ca and Sr. The primary impression creep depth of AEXJ4110 alloy was increased with increasing applied stress and temperature. The creep strain rates of AEXJ4110 alloy under different stresses and temperatures were a power function of time. The constitutive equation of steady-state impression creep for AEXJ4110 alloy can be written as \(\dot{\varepsilon }_{\text{s}} = 9.71 \times 10^{ - 3} (E/T)(\sigma /E)^{4.3} \exp (( - 100.449 + 3368.98(\sigma /E))/RT)\) with stress exponent n 4.3 and creep activation energy Qc about 100.449 kJ/mol. The impression creep mechanism of AEXJ4110 alloy in the temperature range of 398-448 K and stress range of 55-95 MPa is controlled by dislocation climb dominated by self-diffusion of magnesium atoms impeded by the precipitated phases with high melting temperatures.

Keywords

creep mechanism creep resistance impression creep magnesium alloy 

Notes

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 51401037, 51601172, 51865006).

References

  1. 1.
    H. Takagi, M. Dao, and M. Fujiwara, Analysis on Pseudo-Steady Indentation Creep, Acta Mech. Solida Sin., 2008, 21, p 283–288.  https://doi.org/10.1007/s10338-008-0832-3 CrossRefGoogle Scholar
  2. 2.
    F. Yang and J.C.M. Li, Newtonian Viscosity Measured by Impression Test, J. Non-Cryst. Solids, 1997, 212, p 126–135.  https://doi.org/10.1016/S0022-3093(96)00656-4 CrossRefGoogle Scholar
  3. 3.
    F. Yang and J.C.M. Li, Viscosity of Selenium Measured by Impression Test, J. Non-Cryst. Solids, 1997, 212, p 136–142.  https://doi.org/10.1016/S0022-3093(97)00002-1 CrossRefGoogle Scholar
  4. 4.
    F. Naghdi and R. Mahmudi, Impression Creep Behavior of the Extruded Mg-4Zn-0.5Ca and Mg-4Zn-0.5Ca-2R alloys, Mater. Sci. Eng. A, 2014, 616, p 161–170.  https://doi.org/10.1016/j.msea.2014.08.031 CrossRefGoogle Scholar
  5. 5.
    G. Nayyeri and R. Mahmudi, Enhanced Creep Properties of a Cast Mg-5Sn Alloy Subjected to Aging-Treatment, Mater. Sci. Eng. A, 2010, 527, p 4613–4618.  https://doi.org/10.1016/j.msea.2010.04.015 CrossRefGoogle Scholar
  6. 6.
    A. Akbari-Fakhrabadi, R. Mahmudi, A.R. Geranmayeh et al., Impression Creep Behavior of a Cu-6Ni-2Mn-2Sn-2Al Alloy, Mater. Sci. Eng. A, 2012, 535, p 202–208.  https://doi.org/10.1016/j.msea.2011.12.065 CrossRefGoogle Scholar
  7. 7.
    R. Mahmudi, A. Karsaz, A. Akbari-Fakhrabadi et al., Impression Creep Study of a Cu-0.3Cr-0.1Ag Alloy, Mater. Sci. Eng. A, 2010, 527, p 2702–2708.  https://doi.org/10.1016/j.msea.2010.01.044 CrossRefGoogle Scholar
  8. 8.
    R. Mahmudi, A.R. Geranmayeh, H. Noori et al., Impression Creep of Hypoeutectic Sn-Zn Lead-Free Solder Alloys, Mater. Sci. Eng. A, 2008, 491, p 110–116.  https://doi.org/10.1016/j.msea.2008.01.051 CrossRefGoogle Scholar
  9. 9.
    R. Mahmudi, A.R. Geranmayeh, and A. Rezaee-Bazzaz, Impression Creep Behavior of Lead-Free Sn-5Sb Solder Alloy, Mater. Sci. Eng. A, 2007, 448, p 287–293.  https://doi.org/10.1016/j.msea.2006.10.092 CrossRefGoogle Scholar
  10. 10.
    Y. Zhang, L. Yang, J. Dai et al., Effect of Ca and Sr on Microstructure and Compressive Creep Property of Mg-4Al-RE Alloys, Mater. Sci. Eng. A, 2014, 610, p 309–314.  https://doi.org/10.1016/j.msea.2014.05.055 CrossRefGoogle Scholar
  11. 11.
    J. Yan, Y. Sun, F. Xue et al., Creep Deformation Mechanism of Magnesium-Based Alloys, J. Mater. Sci., 2008, 43, p 6952–6959.  https://doi.org/10.1007/s10853-008-2968-4 CrossRefGoogle Scholar
  12. 12.
    B.R. Powell, V. Rezhets, M.P. Balogh et al., Microstructure and Creep Behavior in AE42 Magnesium Die-Casting Alloy, JOM, 2002, 54, p 34–38.  https://doi.org/10.1007/bf02711864 CrossRefGoogle Scholar
  13. 13.
    J. Zhang, K. Liu, D. Fang et al., Microstructure, Tensile Properties, Creep Behavior of High-Pressure Die-Cast Mg-4Al-4RE-0.4Mn (RE = La, Ce) Alloys, J. Mater. Sci., 2009, 44, p 2046–2054.  https://doi.org/10.1007/s10853-009-3283-4 CrossRefGoogle Scholar
  14. 14.
    J. Zhang, P. Yu, K. Liu et al., Effect of Substituting Cerium-Rich Mischmetal with Lanthanum on Microstructure and Mechanical Properties of Die-Cast Mg-Al-RE Alloys, Mater. Des., 2009, 30, p 2372–2378.  https://doi.org/10.1016/j.matdes.2008.10.028 CrossRefGoogle Scholar
  15. 15.
    L. Jin, D. Kevorkov, M. Medraj et al., Al-Mg-RE (RE = La, Ce, Pr, Nd, Sm) Systems: Thermodynamic Evaluations and Optimizations Coupled with Key Experiments and Miedema’s Model Estimations, J. Chem. Thermodyn., 2013, 58, p 166–195.  https://doi.org/10.1016/j.jct.2012.10.021 CrossRefGoogle Scholar
  16. 16.
    D. Weiss, A.A. Kaya, E. Aghion et al., Microstructure and Creep Properties of a Cast Mg-1.7%wt Rare Earth-0.3%wt Mn Alloy, J. Mater. Sci., 2002, 37, p 5371–5379.  https://doi.org/10.1023/a:1021001813867 CrossRefGoogle Scholar
  17. 17.
    T. Rzychoń, A. Kiełbus, and L. Lityńska-Dobrzyńska, Microstructure, Microstructural Stability and Mechanical Properties of Sand-Cast Mg-4Al-4RE Alloy, Mater. Charact., 2013, 83, p 21–34.  https://doi.org/10.1016/j.matchar.2013.06.001 CrossRefGoogle Scholar
  18. 18.
    K. Meshinchi Asl, A. Tari, and F. Khomamizadeh, The Effect of Different Content of Al, RE and Si Element on the Microstructure, Mechanical and Creep Properties of Mg-Al Alloys, Mater. Sci. Eng. A, 2009, 523, p 1–6.  https://doi.org/10.1016/j.msea.2009.06.048 CrossRefGoogle Scholar
  19. 19.
    S.M. Zhu, M.A. Gibson, J.F. Nie et al., Microstructural Analysis of the Creep Resistance of Die-Cast Mg-4Al-2RE Alloy, Scr. Mater., 2008, 58, p 477–480.  https://doi.org/10.1016/j.scriptamat.2007.10.041 CrossRefGoogle Scholar
  20. 20.
    J. Zhang, Z. Leng, S. Liu et al., Structure Stability and Mechanical Properties of Mg-Al-Based Alloy Modified with Y-Rich and Ce-Rich Misch Metals, J. Alloys Compd., 2011, 509, p L187–L193.  https://doi.org/10.1016/j.jallcom.2011.02.173 CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, L. Yang, Z. Huang et al., Study on the Indentation Creep Behavior of Mg-4Al-RE-0.8Ca Magnesium Alloy, J. Mater. Eng. Perform., 2015, 24, p 4290–4296.  https://doi.org/10.1007/s11665-015-1768-7 CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, L. Yang, J. Dai et al., Effect of Ca and Sr on the Compressive Creep Behavior of Mg-4Al-RE Based Magnesium Alloys, Mater. Des., 2014, 63, p 439–445.  https://doi.org/10.1016/j.matdes.2014.06.027 CrossRefGoogle Scholar
  23. 23.
    H. Wang, Q. Wang, D. Yin et al., Tensile Creep Behavior and Microstructure Evolution of Extruded Mg-10Gd-3Y-0.5Zr (wt%) Alloy, Mater. Sci. Eng. A, 2013, 578, p 150–159.  https://doi.org/10.1016/j.msea.2013.04.068 CrossRefGoogle Scholar
  24. 24.
    S. Gavras, S.M. Zhu, J.F. Nie et al., On the Microstructural Factors Affecting Creep Resistance of Die-Cast Mg-La-Rare Earth (Nd, Y or Gd) Alloys, Mater. Sci. Eng. A, 2016, 675, p 65–75.  https://doi.org/10.1016/j.msea.2016.08.046 CrossRefGoogle Scholar
  25. 25.
    W. Vickers and P. Greenfield, Diffusion-Creep in Magnesium Alloys, J Nucl. Mater., 1967, 24, p 249–260.  https://doi.org/10.1016/0022-3115(67)90198-5 CrossRefGoogle Scholar
  26. 26.
    M. Kassner and M. Perez-Prado, Fundamentals of Creep in Metals and Alloys, Elsevier, Amsterdam, 2009Google Scholar
  27. 27.
    P. Nautiyal, J. Jain, and A. Agarwal, A Comparative Study of Indentation Induced Creep in Pure Magnesium and AZ61 Alloy, Mater. Sci. Eng. A, 2015, 630, p 131–138.  https://doi.org/10.1016/j.msea.2015.01.075 CrossRefGoogle Scholar
  28. 28.
    W. Han, G. Yang, L. Xiao et al., Creep Properties and Creep Microstructure Evolution of Mg-2.49Nd-1.82Gd-0.19Zn-0.4Zr Alloy, Mater. Sci. Eng. A, 2017, 684, p 90–100.  https://doi.org/10.1016/j.msea.2016.12.055 CrossRefGoogle Scholar
  29. 29.
    C.J. Boehlert, The Tensile and Creep Behavior of Mg-Zn Alloys With and Without Y and Zr as Ternary Elements, J. Mater. Sci., 2007, 42, p 3675–3684.  https://doi.org/10.1007/s10853-006-1352-5 CrossRefGoogle Scholar
  30. 30.
    H. Wang, Q.D. Wang, C.J. Boehlert et al., The Impression Creep Behavior and Microstructure Evolution of Cast and Cast-Then-Extruded Mg-10Gd-3Y-0.5Zr (wt%), Mater. Sci. Eng. A, 2016, 649, p 313–324.  https://doi.org/10.1016/j.msea.2015.10.001 CrossRefGoogle Scholar
  31. 31.
    H. Wang, Q.D. Wang, C.J. Boehlert et al., Tensile and Compressive Creep Behavior of Extruded Mg-10Gd-3Y-0.5Zr (wt%) Alloy, Mater. Charact., 2015, 99, p 25–37.  https://doi.org/10.1016/j.matchar.2014.11.006 CrossRefGoogle Scholar
  32. 32.
    Q. Yang, T. Zheng, D. Zhang et al., Creep Behavior of High-Pressure Die-Cast Mg-4Al-4La-0.4Mn Alloy Under Medium Stresses and at Intermediate Temperatures, Mater. Sci. Eng. A, 2016, 650, p 190–196.  https://doi.org/10.1016/j.msea.2015.09.061 CrossRefGoogle Scholar
  33. 33.
    D.D. Yin, Q.D. Wang, C.J. Boehlert et al., Creep and Fracture Behavior of As-Cast Mg-11Y-5Gd-2Zn-0.5Zr (wt%), J. Mater. Sci., 2012, 47, p 6263–6275.  https://doi.org/10.1007/s10853-012-6546-4 CrossRefGoogle Scholar
  34. 34.
    F. Naghdi, R. Mahmudi, J.Y. Kang et al., Threshold Creep Behaviour of an Aged Mg-Zn-Ca Alloy, Mater. Sci. Eng. A, 2017, 696, p 536–543.  https://doi.org/10.1016/j.msea.2017.04.104 CrossRefGoogle Scholar
  35. 35.
    J.G. Park, D.Y. Lee, and J. Choi, Static Creep Behaviour of Al-Zn-Mg and Al-Zn-Mg-Cu Alloys, J. Mater. Sci., 1996, 31, p 2719–2723.  https://doi.org/10.1007/bf00687306 CrossRefGoogle Scholar
  36. 36.
    J. Bai, Y. Sun, F. Xue et al., Effect of Extrusion on Microstructures, Mechanical and Creep Properties of Mg-Al-Sr and Mg-Al-Sr-Ca Alloys, Scr. Mater., 2006, 55, p 1163–1166.  https://doi.org/10.1016/j.scriptamat.2006.08.020 CrossRefGoogle Scholar
  37. 37.
    M.E. Kassner and M.T. Perez-Prado, Five-Power-Law Creep in Single Phase Metals and Alloys, Prog. Mater. Sci., 2000, 45, p 1–102.  https://doi.org/10.1016/S0079-6425(99)00006-7 CrossRefGoogle Scholar
  38. 38.
    U.F. Kocks, A.S. Argon, and M.F. Ashby, Thermodynamics and Kinetics of Slip. Progress in Material Science, Pergamon Press, New York, 1975Google Scholar
  39. 39.
    X.Q. Shi, Z.P. Wang, W. Zhou et al., A New Creep Constitutive Model for Eutectic Solder Alloy, J. Electron. Packag., 2002, 124, p 84–90.  https://doi.org/10.1115/1.1462624 CrossRefGoogle Scholar
  40. 40.
    Z. Guo, Y.H. Pao, and H. Conrad, Plastic Deformation Kinetics of 95.5Sn-4Cu-0.5Ag Solder Joints, J. Electron. Packag., 1995, 117, p 100–104.  https://doi.org/10.1115/1.2792074 CrossRefGoogle Scholar
  41. 41.
    R. Mahmudi, S. Ansary, and M.J. Esfandyarpour, Indentation Creep of the Wrought AZ31 Magnesium Alloy, J. Mater. Sci., 2012, 47, p 7181–7188.  https://doi.org/10.1007/s10853-012-6664-z CrossRefGoogle Scholar
  42. 42.
    B. Kondori and R. Mahmudi, Effect of Ca Additions on the Microstructure and Creep Properties of a Cast Mg-Al-Mn Magnesium Alloy, Mater. Sci. Eng. A, 2017, 700, p 438–447.  https://doi.org/10.1016/j.msea.2017.06.007 CrossRefGoogle Scholar
  43. 43.
    R.C. Gifkins, Grain-Boundary Sliding and Its Accommodation During Creep and Superplasticity, Metall. Trans. A, 1976, 7, p 1225–1232.  https://doi.org/10.1007/BF02656607 CrossRefGoogle Scholar
  44. 44.
    T.G. Langdon, Grain Boundary Sliding as a Deformation Mechanism During Creep, Philos. Mag., 1970, 22, p 689–700.  https://doi.org/10.1080/14786437008220939 CrossRefGoogle Scholar
  45. 45.
    H.Q. Sun, Y.N. Shi, M.X. Zhang et al., Plastic Strain-Induced Grain Refinement in the Nanometer Scale in a Mg Alloy, Acta Mater., 2007, 55, p 975–982.  https://doi.org/10.1016/j.actamat.2006.09.018 CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yaocheng Zhang
    • 1
  • Li Yang
    • 1
  • Chenglin Ge
    • 1
  • Song Pang
    • 2
    • 3
  • Xiaopin Wang
    • 3
    • 4
  • Zhiwei Zhang
    • 3
    • 4
  • Zhaoxia Han
    • 4
  1. 1.School of Automotive EngineeringChangshu Institute of TechnologyChangshuChina
  2. 2.Ningbo Branch of China Ordnance Science InstituteNingboChina
  3. 3.Inner Mongolia Metal Material Research InstituteBaotouChina
  4. 4.Inner Mongolia First Machinery Group Co., LTD.BaotouChina

Personalised recommendations