Effects of Heat Treatment on Microstructure, Mechanical Properties, Corrosion Resistance and Cytotoxicity of ZM21 Magnesium Alloy as Biomaterials

  • Dayue Jiang
  • Yilong Dai
  • Yu Zhang
  • Yang Yan
  • Jiaji Ma
  • Ding Li
  • Kun YuEmail author


The effects of heat treatment on microstructure, mechanical properties, corrosion resistance and cytotoxicity of extruded Mg-2Zn-1Mn (wt.%) alloy were investigated for biomedical application in this study. The extruded alloy was T4 treated at 510 °C for 4 h and T5 treated at 200 °C for 16 h separately. The extruded Mg-Zn-Mn alloy mainly consists of MgxMny phases. After T4 treatment, the amount of MgxMny phases decreases and average grain size rises from 8 to 24 μm. After T5 treatment, Mg7Zn3 phase newly precipitates along the grain boundaries and the size of grain remains similar. Compared with the T4-treated samples, the extruded and T5-treated samples exhibit higher mechanical properties. The T5-treated samples have an ultimate tensile stress of 273 MPa and an elongation of 19.7%. On the other hand, T4-treated samples present higher corrosion resistance in electrochemical tests. The degradation rates of extruded, T4-treated and T5-treated samples are 0.44 mm/year, 0.48 mm/year and 0.50 mm/year, respectively, in Ringer’s solution at 37 ± 0.2 °C. In addition, T4-treated alloy does not induce toxicity to the L-929 cells in in vitro cytotoxicity test.


biomaterial corrosion properties cytotoxicity heat treatment magnesium 



This work was supported by the Natural Science Foundation of Hunan Province of China (2018JJ2506). The authors acknowledge the Project (2017GK2120) supported by the Key Research and Development Program of Hunan Province. This work also received financial support of the Natural Science Foundation of Shandong Province of China (ZR2017MEM005) and 2015 ShanDong province project of outstanding subject talent group.


  1. 1.
    P. Trumbo, S. Schlicker, A.A. Yates, and M. Poos, Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids, J. Am. Diet. Assoc., 2002, 102, p 1621–1630CrossRefGoogle Scholar
  2. 2.
    F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, and H. Windhagen, In Vitro and In Vivo Corrosion Measurements of Magnesium Alloys, Biomaterials, 2006, 27, p 1013–1018CrossRefGoogle Scholar
  3. 3.
    P. Zartner, R. Cesnjevar, H. Singer, and M. Weyand, First Successful Implantation of a Biodegradable Metal Stent into the Left Pulmonary Artery of a Preterm Baby, Catheter. Cardiovasc. Interv., 2005, 66, p 590–594CrossRefGoogle Scholar
  4. 4.
    D. Tie, R. Guan, H. Liu, A. Cipriano, Y. Liu, Q. Wang, Y. Huang, and N. Hort, An In Vivo Study on the Metabolism and Osteogenic Activity of Bioabsorbable Mg-1Sr Alloy, Acta Biomater., 2016, 29, p 455–467CrossRefGoogle Scholar
  5. 5.
    S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, Y. He, Y. Jiang, and Y. Bian, Research on an Mg-Zn Alloy as a Degradable Biomaterial, Acta Biomater., 2010, 6, p 626–640CrossRefGoogle Scholar
  6. 6.
    Z. Li, X. Gu, S. Lou, and Y. Zheng, The Development of Binary Mg-Ca Alloys for Use as Biodegradable Materials Within Bone, Biomaterials, 2008, 29, p 1329–1344CrossRefGoogle Scholar
  7. 7.
    K. Yu, L. Chen, J. Zhao, S. Li, Y. Dai, Q. Huang, and Z. Yu, In Vitro Corrosion Behavior and In Vivo Biodegradation of Biomedical β-Ca3(PO4)2/Mg–Zn Composites, Acta Biomater., 2012, 8, p 2845–2855CrossRefGoogle Scholar
  8. 8.
    M.B. Kannan and R.K. Raman, In Vitro Degradation and Mechanical Integrity of Calcium-Containing Magnesium Alloys in Modified-Simulated Body Fluid, Biomaterials, 2008, 29, p 2306CrossRefGoogle Scholar
  9. 9.
    V. Kaesel, P.T. Tai, F.W. Bach, H. Haferkamp, F. Witte, H. Windhagen, Approach to control the corrosion of magnesium by alloying, in: Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications, 2005, p. 534–539Google Scholar
  10. 10.
    A. McGoron and D. Persaud-Sharma, Biodegradable Magnesium Alloys: A Review of Material Development and Applications, J. Biomater. Tissue Eng., 2011, 12, p 25–39Google Scholar
  11. 11.
    M. Erinc, W.H. Sillekens, R. Mannens, and R.J. Werkhoven, Applicability of existing magnesium alloys as biomedical implant materials, Magnesium Technology. San Francisco, E.A. Nyberg, S.R. Agnew, N.R. Neelameggham, and M.Q. Pekguleryuz, Ed., Minerals, Metals and Materials Society, Warrendale, 2009, p 209–214 Google Scholar
  12. 12.
    M. Bamberger and G. Dehm, Trends in the Development of New Mg Alloys, Ann. Rev. Mater. Res., 2008, 38, p 505–533CrossRefGoogle Scholar
  13. 13.
    T.D. Luckey and B. Venugopal, Metal Toxicity in Mammals. Volume 1. Physiologic and Chemical Basis for Metal Toxicity, Biochem. Soc. Trans., 1977, 6, p 819–820Google Scholar
  14. 14.
    G. Song, Control of Biodegradation of Biocompatable Magnesium Alloys, Corros. Sci., 2007, 49, p 1696–1701CrossRefGoogle Scholar
  15. 15.
    S. Farè, Q. Ge, M. Vedani, G. Vimercati, D. Gastaldi, F. Migliavacca, L. Petrini, and S. Trasatti, Evaluation of Material Properties and Design Requirements for Biodegradable Magnesium Stents, Matéria, 2010, 15(2), p 96–103Google Scholar
  16. 16.
    E. Zhang, D. Yin, L. Xu, L. Yang, and K. Yang, Microstructure, Mechanical and Corrosion Properties and Biocompatibility of Mg–Zn–Mn Alloys for Biomedical Application, Mater. Sci. Eng. C Mater. Biol. Appl., 2009, 29, p 987–993CrossRefGoogle Scholar
  17. 17.
    Y. Chen, Z. Xu, C. Smith, and J. Sankar, Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants, Acta Biomater., 2014, 10, p 4561CrossRefGoogle Scholar
  18. 18.
    Y. Song, E.H. Han, D. Shan, D.Y. Chang, and B.S. You, The Role of Second Phases in the Corrosion Behavior of Mg–5Zn Alloy, Corros. Sci., 2012, 60, p 238–245CrossRefGoogle Scholar
  19. 19.
    X.-B. Liu, D.-Y. Shan, Y.-W. Song, and E.-H. Han, Effects of Heat Treatment on Corrosion Behaviors of Mg-3Zn Magnesium Alloy, Trans. Nonferrous Metal Soc., 2010, 20, p 1345–1350CrossRefGoogle Scholar
  20. 20.
    X. Liu, D. Shan, Y. Song, R. Chen, and E. Han, Influences of the Quantity of Mg 2 Sn Phase on the Corrosion Behavior of Mg–7Sn Magnesium Alloy, Electrochim. Acta, 2011, 56, p 2582–2590CrossRefGoogle Scholar
  21. 21.
    Y. Wang, D. Tie, R. Guan, N. Wang, Y. Shang, T. Cui, and J. Li, Microstructures, Mechanical Properties, and Degradation Behaviors of Heat-Treated Mg-Sr Alloys as Potential Biodegradable Implant Materials, J Mech. Behav. Biomed., 2018, 77, p 47–57CrossRefGoogle Scholar
  22. 22.
    X. Li, J.-H. Jiang, Y.-H. Zhao, A.-B. Ma, D.-J. Wen, and Y.-T. Zhu, Effect of Equal-Channel Angular Pressing and Aging on Corrosion Behavior of ZK60Mg Alloy, Trans. Nonferrous Metal Soc., 2015, 25, p 3909–3920CrossRefGoogle Scholar
  23. 23.
    Y. Yan, H. Cao, Y. Kang, K. Yu, T. Xiao, J. Luo, Y. Deng, H. Fang, H. Xiong, and Y. Dai, Effects of Zn Concentration and Heat Treatment on the Microstructure, Mechanical Properties and Corrosion Behavior of As-Extruded Mg-Zn Alloys Produced by Powder Metallurgy, J. Alloy. Compd., 2017, 693, p 1277–1289CrossRefGoogle Scholar
  24. 24.
    International A. Standard Test Methods for Determining Average Grain Size, 2013Google Scholar
  25. 25.
    J.A. Helsen and H. Jürgen Breme, Metals as Biomaterials, Wiley, New York, 1998, p 522ISBN 0-471-96935-4Google Scholar
  26. 26.
    Z. Shi and A. Atrens, An Innovative Specimen Configuration for the Study of Mg Corrosion, Corros. Sci., 2011, 53, p 226–246CrossRefGoogle Scholar
  27. 27.
    B.S. Institution, EN ISO 10993-5. Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity, ANSI/AAMI, Arlington, 1999Google Scholar
  28. 28.
    Y. Zhou, Y. Li, D. Luo, Y. Ding, and P. Hodgson, Microstructures, Mechanical and Corrosion Properties and Biocompatibility of as Extruded Mg–Mn–Zn–Nd Alloys for Biomedical Applications, Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 49, p 93–100CrossRefGoogle Scholar
  29. 29.
    X. Wang, P. Zhang, L.H. Dong, X.L. Ma, J.T. Li, and Y.F. Zheng, Microstructure and Characteristics of Interpenetrating β-TCP/Mg–Zn–Mn Composite Fabricated by Suction Casting, Mater. Des., 2014, 54, p 995–1001CrossRefGoogle Scholar
  30. 30.
    D. Lin, F. Hung, T. Lui, and M. Yeh, Heat Treatment Mechanism and Biodegradable Characteristics of ZAX1330Mg Alloy, Mater. Sci. Eng. C Mater. Biol. Appl., 2015, 51, p 300–308CrossRefGoogle Scholar
  31. 31.
    Y. Song, E.-H. Han, D. Shan, C.D. Yim, and B.S. You, The Effect of Zn Concentration on the Corrosion Behavior of Mg–xZn alloys, Corros. Sci., 2012, 65, p 322–330CrossRefGoogle Scholar
  32. 32.
    C.N. Cao and J.Q. Zhang, An Introduction of Electrochemical Impedance Spectroscopy Science, Science Press, Beijing, 2002, p 86–106Google Scholar
  33. 33.
    M. Jamesh, S. Kumar, and T.S.N.S. Narayanan, Corrosion Behavior of Commercially Pure Mg and ZM21Mg Alloy in Ringer’s Solution—Long Term Evaluation by EIS, Corros. Sci., 2011, 53, p 645–654CrossRefGoogle Scholar
  34. 34.
    G. Song, A. Atrens, D. Stjohn, J. Nairn, and Y. Li, The Electrochemical Corrosion of Pure Magnesium in 1N NaCl, Corros. Sci., 1997, 39, p 855–875CrossRefGoogle Scholar
  35. 35.
    Okamoto H, Phase Diagrams for Binary Alloys, in Workshops on Abstract State Machines, 2000.Google Scholar
  36. 36.
    E.O. Hall, Yield Point Phenomena in Metals and Alloys, Macmillan, London, 1970CrossRefGoogle Scholar
  37. 37.
    A.J. Ardell, Precipitation Hardening, Metall. Trans. A, 1985, 16, p 2131–2165CrossRefGoogle Scholar
  38. 38.
    D. Zhang, X. Hao, D. Fang, and Y. Chai, Effects of Heat Treatment on Microstructure and Mechanical Properties of as-Extruded Mg-9Sn-1.5Y-0.4Zr Magnesium Alloy, Rare Metal Mater. Eng., 2016, 45, p 2208–2213CrossRefGoogle Scholar
  39. 39.
    S.Z. Zhu, T.J. Luo, T.A. Zhang, Y.T. Liu, and Y.S. Yang, Effects of Extrusion and Heat Treatments on Microstructure and Mechanical Properties of Mg–8Zn–1Al–0.5Cu–0.5Mn Alloy, Trans. Nonferrous Metal Soc., 2017, 27, p 73–81CrossRefGoogle Scholar
  40. 40.
    H. Zhang, J. Fan, L. Zhang, G. Wu, W. Liu, W. Cui, and S. Feng, Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviors of Sand-Cast Mg-4Y-3Nd-1Gd-0.2Zn-0.5Zr Alloy, Mater. Sci. Eng. A Struct. Mater., 2016, 677, p 411–420CrossRefGoogle Scholar
  41. 41.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Magnesium and its Alloys as Orthopedic Biomaterials: A Review, Biomaterials, 2006, 27, p 1728–1734CrossRefGoogle Scholar
  42. 42.
    A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17, p 400–453CrossRefGoogle Scholar
  43. 43.
    G.L. Song, 1–Corrosion electrochemistry of magnesium (Mg) and its alloys, Corrosion of Magnesium Alloys, G.L. Song, Ed., Woodhead, Cambridge, 2011, p 3–65 CrossRefGoogle Scholar
  44. 44.
    G. Song, A. Atrens, and M. Dargusch, Influence of Microstructure on the Corrosion of Diecast AZ91D, Corros. Sci., 1998, 41, p 249–273CrossRefGoogle Scholar
  45. 45.
    M.M. Avedesian, H. Baker, Magnesium and magnesium alloys-ASM specialty handbook, in Workshops on Abstract State Machines, 1999Google Scholar
  46. 46.
    A. Atrens, M. Liu, N.I.Z. Abidin, and G.L. Song, 3–Corrosion of magnesium (Mg) alloys and metallurgical influence, Corrosion of Magnesium Alloys, G.L. Song, Ed., Woodhead, Cambridge, 2011, p 117–165 CrossRefGoogle Scholar
  47. 47.
    A. Atrens, G.L. Song, F. Cao, Z. Shi, and P.K. Bowen, Advances in Mg Corrosion and Research Suggestions, J. Magn. Alloys, 2013, 1, p 177–200CrossRefGoogle Scholar
  48. 48.
    Z. Shi, F. Cao, G.L. Song, and A. Atrens, Low Apparent Valence of Mg During Corrosion, Corros. Sci., 2014, 88, p 434–443CrossRefGoogle Scholar
  49. 49.
    A. Pardo, M.C. Merino, A.E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corrosion Behaviour of Magnesium/Aluminium Alloys in 3.5 wt% NaCl, Corros. Sci., 2008, 50, p 823–834CrossRefGoogle Scholar
  50. 50.
    X. Gu, W. Zhou, Y. Zheng, L. Dong, Y. Xi, and D. Chai, Microstructure, Mechanical Property, Bio-Corrosion and Cytotoxicity Evaluations of Mg/HA Composites, Mater. Sci. Eng. C Mater. Biol. Appl., 2010, 30, p 827–832CrossRefGoogle Scholar
  51. 51.
    Y. Dai, Y. Lu, D. Li, K. Yu, D. Jiang, Y. Yan, L. Chen, and T. Xiao, Effects of Polycaprolactone Coating on the Biodegradable Behavior and Cytotoxicity of Mg-6%Zn-10%Ca3(PO4)2 Composite in Simulated Body Fluid, Mater. Lett., 2017, 198, p 118–120CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Dayue Jiang
    • 1
  • Yilong Dai
    • 1
  • Yu Zhang
    • 1
  • Yang Yan
    • 1
  • Jiaji Ma
    • 1
  • Ding Li
    • 2
  • Kun Yu
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.The Second Xiangya Hospital of Central South UniversityChangshaChina

Personalised recommendations