Advertisement

Experimental and Numerical Analyses of the Consolidation Process of AA 7075–2 wt.% ZrO2 Powders by Equal Channel Angular Pressing

  • S. E. Hernández-Martínez
  • J. J. Cruz-Rivera
  • C. G. Garay-Reyes
  • J. L. Hernández-Rivera
Article
  • 19 Downloads

Abstract

AA7075 matrix composite was obtained by mechanical alloying using ZrO2 particles as reinforcement. After that, the powders were cold-compacted into an aluminum tube and consolidated by equal channel angular pressing at 220 °C. The temperature influence was analyzed, and it was found by scanning electron microscopy that this route gave the minimum pore percentage. Besides, it was noticeable that the hardness was wide superior in comparison with the AA 7075 aged bulk alloy. In addition, there was no evidence of any chemical reaction between ZrO2 and alloying elements at the temperature employed. On the other hand, it was numerically and experimentally demonstrated that the more strained regions exhibited a higher relative density values.

Keywords

aluminum alloys metallic matrix composites powder metallurgy 

Notes

Acknowledgments

Academic and financial support by the Universidad Autónoma de San Luis Potosi and CONACYT is appreciated. One of the authors (JLHR) gratefully recognizes the financial support from FAI-UASLP under the Project CI5-FAI-04-45.45 and acknowledges CONACYT for the economic support for the acquisition of the DEFORM 3D software under the institutional program “Cátedras CONACYT 2014” under Project Number 2198. A special acknowledgment is extended to Claudia Guadalupe Elias, Rosalina Tovar, and Manuel Gutierrez from Universidad Autónoma de San Luis Potosí for their technical assistance.

References

  1. 1.
    N. Ewara Prasad and R.J.H. Wanhill, Aerospace Materials, and Material Technologies Volume 2: Aerospace Materials, Chap. 8, Springer press, Singapore, 2017Google Scholar
  2. 2.
    A.H. Monazzah, H. Pouraliakbar, R. Bagheri, and S.M. Seyed Reihani, Toughness Behavior in roll-Bonded Laminates Based on AA6061/SiCp Composites, Mater. Sci. Eng. A, 2014, 598, p 162CrossRefGoogle Scholar
  3. 3.
    A.H. Monazzah, H. Pouraliakbar, M.R. Jandaghi, R. Bagheri, and S.M. Seyed Reihani, Influence of Interfacial Adhesion on the Damage Tolerance of Al6061/SiCp Laminated Composites, Ceram. Int., 2017, 43, p 2632CrossRefGoogle Scholar
  4. 4.
    A. Hosseini, M.H. Pouraliakbar, R. Bagheri, S. Morteza, and S. Reihani, Al-Mg-Si/SiC Laminated Composites: Fabrication, Architectural Characteristics, Toughness, Damage Tolerance, Fracture Mechanisms, Compos. B Eng., 2017, 125, p 49CrossRefGoogle Scholar
  5. 5.
    H. Pouraliakbar, A. Hosseni Monazah, R. Bagheri, S.M. Seyed Reihani, G. Kalagh, A. Nazari, and M.R. Jandaghi, Influence of Interfacial Adhesion on the Damage Tolerance of Al6061/SiCp Laminated Composites, Ceram. Int., 2017, 43, p 2632CrossRefGoogle Scholar
  6. 6.
    J. Singh and A. Chauhan, Overview of Wear Performance of Aluminium Matrix Composites Reinforced with Ceramic Materials Under the Influence of Controllable Variables, Ceram. Int., 2016, 42, p 56CrossRefGoogle Scholar
  7. 7.
    R. Fuentes-Ramirez, A. Perez-González, and V.M. Castaño-Meneses, Improved Wear Resistance of an Aluminum-Zirconia Composite, Met. Sci. Heat Treat., 2010, 52, p 368CrossRefGoogle Scholar
  8. 8.
    J. Hemanth, Development and Property Evaluation of Aluminum Alloy Reinforced with Nano-ZrO2 Metal Matrix Composites (NMMCs), Mater. Sci. Eng. A, 2009, 507, p 110CrossRefGoogle Scholar
  9. 9.
    H. Abdizaeh and M.A. Baghchesara, Investigation on Mechanical Properties and Fracture Behaviour of A356 Aluminum Alloy Based ZrO2 Particles Reinforced Metal-Matrix Composites, Ceram. Int., 2013, 39, p 2045CrossRefGoogle Scholar
  10. 10.
    J. Dutkiewicz, L. Litynska-Dobrzynska, and K. Matsuda, Structure of Composites Consolidated from Ball Milled 7475 Aluminum Alloy and ZrO2 Powders, Int. J. Mater. Res., 2013, 104, p 123–128CrossRefGoogle Scholar
  11. 11.
    S. Hernández-Martinez, J.J. Cruz-Rivera, R. Martinez-Sánchez, C.G. Garay-Reyes, J.A. Bolaños-Muñoz, J.M. Cabrera, and J.L. Hernández-Rivera, Consolidation of AA-7075-2wt.% ZrO2 Composite Powders by Severe Plastic Deformation Via ECAP, Acta Met. Sin., 2016, 29, p 895–901CrossRefGoogle Scholar
  12. 12.
    H. Pouraliakbar, S. Firooz, M.R. Jandaghi, G. Khalaj, and A. Amirafshar, Combined Effect of Heat Treatment and Rolling on Pre-strained and SPDed Aluminum Sheet, Mater. Sci. Eng. A, 2014, 612, p 371–379CrossRefGoogle Scholar
  13. 13.
    M.R. Jandaghi and H. Pouraliakbar, Study on the Effect of Post-Annealing on the Microstructural Evolutions and Mechanical Properties of Rolled CGPed Aluminum-Manganese-Silicon Alloy, Mater. Sci. Eng. A, 2017, 679, p 493–503CrossRefGoogle Scholar
  14. 14.
    M.R. Jandaghi, H. Pouraliakbar, M.K. Gharah Shiran, G. Khalaj, and M. Shirazi, On the Effect Of Non-isothermal Annealing and Multi-directional Forging on the Microstructural Evolutions and Correlated Mechanical and Electrical Characteristics of hot-Deformed Al-Mg Alloy, Mater. Sci. Eng. A, 2016, 657, p 431CrossRefGoogle Scholar
  15. 15.
    R. Derakhshandeh, S.A. Jenabali, A. Moresedgh, and M. Tabandeh, A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite, J. Mater. Eng. Perform., 2012, 21, p 1885CrossRefGoogle Scholar
  16. 16.
    G. Terence, Langdon, Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties Through Grain Refinement, Acta Mater., 2013, 61, p 7035CrossRefGoogle Scholar
  17. 17.
    F. Djavanroodi and M. Ebrahimi, Effect of Die Channel Angle, Friction and Back Pressure in the Equal Channel Angular Pressing Using 3D Finite Element Simulation, Mater. Sci. Eng. A, 2010, 527, p 1230–1235CrossRefGoogle Scholar
  18. 18.
    S.C. Yoon and H.S. Kim, Finite Element Analysis of the Effect of the Inner Corner Angle in Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2008, 490, p 438–444CrossRefGoogle Scholar
  19. 19.
    S.C. Yoon, P. Quang, S.I. Hong, and H.S. Kim, Die Design for Homogeneous Plastic Deformation During Equal Channel Angular Pressing, J. Mater. Process. Technol., 2007, 187, p 46–50CrossRefGoogle Scholar
  20. 20.
    S.E. Hernández-Martínez, J.J. Cruz-Rivera, C.G. Garay-Reyes, R. Martínez-Sánchez, I. Estrada-Guel, and J.L. Hernández-Rivera, Comparative Study of the Synthesis of AA 7075–ZrO2 Metal Matrix Composite by Different Mills, J. Alloys Compd., 2015, 643, p S107–S113CrossRefGoogle Scholar
  21. 21.
    A.V. Nagasekhar, Y. Tick-Hon, and K.S. Ramakanth, Mechanics of Single Pass Equal Channel Angular Extrusion of Powder in Tubes, Appl. Phys. A, 2006, 85, p 185CrossRefGoogle Scholar
  22. 22.
    M.J. Qarni, G. Sivaswamy, A. Rosochowski, and S. Boczkal, Effect of Incremental Equal Channel Angular Pressing (I-ECAP) on the Microstructural Characteristics and Mechanical Behaviour of Commercially Pure Titanium, Mater. Des., 2017, 122, p 385CrossRefGoogle Scholar
  23. 23.
    M. Gazizov, V. Telesov, V.V. Zakharov, and R. Kaibyshev, Effect of ECAP on Mechanical Properties of an Al-Cu-Mg-Ag-Sc Alloy, Mat. Sci. For., 2010, 667–669, p 967–972Google Scholar
  24. 24.
    M.S. Musa and Z. Schauperl, ECAP—New Consolidation Method for Production of Aluminium Matrix Composites with Ceramic Reinforcement, Process. Appl. Ceram., 2013, 7, p 63–68CrossRefGoogle Scholar
  25. 25.
    Z. Horita, T. Fujinami, M. Nemoto, and T. Langdon, Equal-Channel Angular Pressing of Commercial Aluminum Alloys: Grain Refinement, Thermal Stability, and Tensile Properties, Metall. Mater. Trans. A, 2000, 31, p 691–701CrossRefGoogle Scholar
  26. 26.
    H. Okamaoto, Zn-Zr System, J. Phase Equilib. Differ., 2007, 28, p 236–237CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • S. E. Hernández-Martínez
    • 1
  • J. J. Cruz-Rivera
    • 1
  • C. G. Garay-Reyes
    • 2
  • J. L. Hernández-Rivera
    • 3
  1. 1.Instituto de Metalurgia, Universidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Laboratorio Nacional de NanotecnologíaCentro de Investigación de Materiales Avanzados (CIMAV)ChihuahuaMexico
  3. 3.CONACYT-Instituto de MetalurgiaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations