Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 382–393 | Cite as

Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x = 0, 0.25, 0.5 and 1.5) SMAs

  • Mustafa K. IbrahimEmail author
  • E. Hamzah
  • Safaa N. Saud


Porous Ti-Nb-xSn shape memory alloys (SMAs) are fabricated by microwave sintering technology. The microstructures exhibit needle-like morphologies, β(N) (normal straight and crossed needles along with needle-like morphology that resembles spaghetti or irregular lines with α-phases in between) as well as plate-like morphologies [normal straight plate-like morphology, α′′ and dendritic plate-like morphology, β(D)]. Increases in Sn addition significantly induce an increase in the density of the α-phase. XRD patterns exhibited three phases, namely the β-main phase with smaller intensities of α′′ and α. Further, the addition of 0.25% Sn led to more effective improvement in the intensity of the α′′-phase compared with 0.5% and 1.5% Sn addition. Additions of Sn also enhanced the fracture strength and its corresponding strain along with the shape memory effect (SME), where the best enhancement was achieved at 0.25% Sn. The corrosion rate (Ri) was reduced by rising Sn content, while both corrosion resistance and antibacterial zones were increased. The lower elastic modulus, as well as the robust mechanical properties and bioactivity, made these SMAs rather suitable for biomedical application purposes, where the low elastic modulus had value in terms of avoiding the problem of “stress shielding.”


antibacterial effect mechanical and corrosion behaviors microstructure microwave sintering porous Ti-Nb-xSn shape memory alloys (SMAs) 



The authors would like to thank the Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia for providing the financial support under the University Research Grant No. Q.J130000.2524.12H60 and research facilities.


  1. 1.
    X. Wang, Y. Li, J. Xiong, P.D. Hodgson, and C.E. Wen, Porous TiNbZr Alloy Scaffolds for Biomedical Applications, Acta Biomater., 2009, 5(9), p 3616–3624Google Scholar
  2. 2.
    A. Choubey, R. Balasubramaniam, and B. Basu, Effect of Replacement of V by Nb and Fe on the Electrochemical and Corrosion Behavior of Ti-6Al-4V in Simulated Physiological Environment, J. Alloy. Compd., 2004, 381(1), p 288–294Google Scholar
  3. 3.
    Y. Tong, B. Guo, Y. Zheng, C.Y. Chung, and L.W. Ma, Effects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys, J. Mater. Eng. Perform., 2011, 20(4–5), p 762–766Google Scholar
  4. 4.
    S. Lu, F. Ma, P. Liu, W. Li, X. Liu, X. Chen, K. Zhang, Q. Han, and L.-C. Zhang, Recrystallization Behavior and Super-Elasticity of a Metastable β-Type Ti-21Nb-7Mo-4Sn Alloy During Cold Rolling and Annealing, J. Mater. Eng. Perform., 2018, 27(8), p 4100–4106Google Scholar
  5. 5.
    T. Ogawa, H. Takada, and K. Maruoka, Corrosion and Mechanical Degradation of Ni-Ti Superelastic Alloy in Neutral Fluoride Solution, J. Mater. Eng. Perform., 2018, 27, p 1–6Google Scholar
  6. 6.
    Y. Xiao, H. Liu, D. Yi, J. Le, H. Zhou, Y. Jiang, X. Zhao, Z. Chen, J. Wang, and Q. Gao, High-Temperature Deformation Behavior of Ti-6Al-2Sn-4Zr-2Mo Alloy with Lamellar Microstructure Under Plane-Strain Compression, J. Mater. Eng. Perform., 2018, 27, p 1–14Google Scholar
  7. 7.
    M. Long and H. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19(18), p 1621–1639Google Scholar
  8. 8.
    D.M. Cullinane and T.A. Einhorn, Biomechanics of Bone, Princ. Bone Biol., 2002, 1, p 16–32Google Scholar
  9. 9.
    M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54(3), p 397–425Google Scholar
  10. 10.
    H. Kröger, P. Venesmaa, J. Jurvelin, H. Miettinen, O. Suomalainen, and E. Alhava, Bone Density at the Proximal Femur After Total Hip Arthroplasty, Clin. Orthop. Relat. Res., 1998, 352, p 66–74Google Scholar
  11. 11.
    T. Ozaki, H. Matsumoto, S. Watanabe, and S. Hanada, Beta Ti Alloys with Low Young’s Modulus, Mater. Trans., 2004, 45(8), p 2776–2779Google Scholar
  12. 12.
    D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and Mechanical Properties of New β Type Titanium Alloys for Implant Materials, Mater. Sci. Eng., A, 1998, 243(1), p 244–249Google Scholar
  13. 13.
    T. Ahmed, A New Low Modulus, Biocompatible Titanium Alloy, in Titanium’95: Science and Technology (1996), pp. 1760–1767Google Scholar
  14. 14.
    A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs, and T.J. FitzGerald, Mechanical and Tribological Properties and Biocompatibility of Diffusion Hardened Ti-13Nb-13Zr—A New Titanium Alloy for Surgical Implants, Medical Applications of Titanium and its Alloys: The Material and Biological Issuesed, ASTM International, West Conshohocken, 1996Google Scholar
  15. 15.
    J. Xu, L. Bao, A. Liu, X. Jin, Y. Tong, J. Luo, Z. Zhong, and Y. Zheng, Microstructure, Mechanical Properties and Superelasticity of Biomedical Porous NiTi Alloy Prepared by Microwave Sintering, Mater. Sci. Eng., C, 2015, 46, p 387–393Google Scholar
  16. 16.
    D. Yang, Z. Guo, H. Shao, X. Liu, and Y. Ji, Mechanical Properties of Porous Ti-Mo and Ti-Nb Alloys for Biomedical Application by Gelcasting, Proc. Eng., 2012, 36, p 160–167Google Scholar
  17. 17.
    M. Mour, D. Das, T. Winkler, E. Hoenig, G. Mielke, M.M. Morlock, and A.F. Schilling, Advances in Porous Biomaterials for Dental and Orthopaedic Applications, Materials, 2010, 3(5), p 2947–2974Google Scholar
  18. 18.
    A. Bansiddhi, T. Sargeant, S.I. Stupp, and D. Dunand, Porous NiTi for Bone Implants: A Review, Acta Biomater., 2008, 4(4), p 773–782Google Scholar
  19. 19.
    G. Ryan, A. Pandit, and D.P. Apatsidis, Fabrication Methods of Porous Metals for Use in Orthopaedic Applications, Biomaterials, 2006, 27(13), p 2651–2670Google Scholar
  20. 20.
    H. Matsumoto, S. Watanabe, and S. Hanada, Beta TiNbSn Alloys with Low Young’s Modulus and High Strength, Mater. Trans., 2005, 46(5), p 1070–1078Google Scholar
  21. 21.
    O. Khalifa, E. Wahab, and A. Tilp, The Effect of Sn and TiO2 Nano Particles Added in Electroless Ni-P Plating Solution on the Properties of Composite Coatings, Aust. J. Basic Appl. Sci., 2011, 5(6), p 136–144Google Scholar
  22. 22.
    M. Ghoranneviss and S. Shahidi, Effect of Various Metallic Salts on Antibacterial Activity and Physical Properties of Cotton Fabrics, J. Ind. Text., 2013, 42(3), p 193–203Google Scholar
  23. 23.
    M. Wen, C. Wen, P. Hodgson, and Y. Li, Fabrication of Ti-Nb-Ag Alloy Via Powder Metallurgy for Biomedical Applications, Mater. Des., 2014, 56, p 629–634Google Scholar
  24. 24.
    J. Xiong, Y. Li, X. Wang, P. Hodgson, and C.E. Wen, Mechanical Properties and Bioactive Surface Modification via Alkali-Heat Treatment of a Porous Ti-18Nb-4Sn Alloy for Biomedical Applications, Acta Biomater., 2008, 4(6), p 1963–1968Google Scholar
  25. 25.
    D. Zhao, K. Chang, T. Ebel, H. Nie, R. Willumeit, and F. Pyczak, Sintering Behavior and Mechanical Properties of a Metal Injection Molded Ti-Nb Binary Alloy as Biomaterial, J. Alloy. Compd., 2015, 640, p 393–400Google Scholar
  26. 26.
    D. Zhao, K. Chang, T. Ebel, M. Qian, R. Willumeit, M. Yan, and F. Pyczak, Microstructure and Mechanical Behavior of Metal Injection Molded Ti-Nb Binary Alloys as Biomedical Material, J. Mech. Behav. Biomed. Mater., 2013, 28, p 171–182Google Scholar
  27. 27.
    F. Kafkas and T. Ebel, Metallurgical and Mechanical Properties of Ti-24Nb-4Zr-8Sn Alloy Fabricated by Metal Injection Molding, J. Alloy. Compd., 2014, 617, p 359–366Google Scholar
  28. 28.
    A. Aleksanyan, S. Dolukhanyan, V.S. Shekhtman, S. Khasanov, O. Ter-Galstyan, and M. Martirosyan, Formation of Alloys in the Ti-Nb System by Hydride Cycle Method and Synthesis of Their Hydrides in Self-Propagating High-Temperature Synthesis, Int. J. Hydrogen Energy, 2012, 37(19), p 14234–14239Google Scholar
  29. 29.
    L.W. Ma, C.Y. Chung, Y. Tong, and Y. Zheng, Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing, J. Mater. Eng. Perform., 2011, 20(4–5), p 783–786Google Scholar
  30. 30.
    A. Terayama, N. Fuyama, Y. Yamashita, I. Ishizaki, and H. Kyogoku, Fabrication of Ti-Nb Alloys by Powder Metallurgy Process and their Shape Memory Characteristics, J. Alloy. Compd., 2013, 577, p S408–S412Google Scholar
  31. 31.
    X. Wang, Y. Chen, L. Xu, Z. Liu, and K.-D. Woo, Effects of Sn Content on the Microstructure, Mechanical Properties and Biocompatibility of Ti-Nb-Sn/Hydroxyapatite Biocomposites Synthesized by Powder Metallurgy, Mater. Des., 2013, 49, p 511–519Google Scholar
  32. 32.
    M. Oghbaei and O. Mirzaee, Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications, J. Alloy. Compd., 2010, 494(1), p 175–189Google Scholar
  33. 33.
    S. Das, A. Mukhopadhyay, S. Datta, and D. Basu, Prospects of Microwave Processing: An Overview, Bull. Mater. Sci., 2009, 32(1), p 1–13Google Scholar
  34. 34.
    R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, Full Sintering of Powdered-Metal Bodies in a Microwave Field, Nature, 1999, 399(6737), p 668–670Google Scholar
  35. 35.
    H. Bakhsheshi-Rad, M. Idris, M. Abdul-Kadir, A. Ourdjini, M. Medraj, M. Daroonparvar, and E. Hamzah, Mechanical and Bio-corrosion Properties of Quaternary Mg-Ca-Mn-Zn Alloys Compared with Binary Mg-Ca Alloys, Mater. Des., 2014, 53, p 283–292Google Scholar
  36. 36.
    G. Argade, K. Kandasamy, S. Panigrahi, and R. Mishra, Corrosion Behavior of a Friction Stir Processed Rare-Earth Added Magnesium Alloy, Corros. Sci., 2012, 58, p 321–326Google Scholar
  37. 37.
    N. Iqbal, M.R.A. Kadir, N.H.B. Mahmood, S. Iqbal, D. Almasi, F. Naghizadeh, H. Balaji, and T. Kamarul, Characterization and Biological Evaluation of Silver Containing Fluoroapatite Nanoparticles Prepared Through Microwave Synthesis, Ceram. Int., 2015, 41(5), p 6470–6477Google Scholar
  38. 38.
    P.J.S. Buenconsejo, H.Y. Kim, and S. Miyazaki, Effect of Ternary Alloying Elements on the Shape Memory Behavior of Ti-Ta Alloys, Acta Mater., 2009, 57(8), p 2509–2515Google Scholar
  39. 39.
    P.J.S. Buenconsejo, H.Y. Kim, and S. Miyazaki, Novel β-TiTaAl Alloys with Excellent Cold Workability and a Stable High-Temperature Shape Memory Effect, Scripta Mater., 2011, 64(12), p 1114–1117Google Scholar
  40. 40.
    H.Y. Kim, T. Fukushima, P.J.S. Buenconsejo, T.-H. Nam, and S. Miyazaki, Martensitic Transformation and Shape Memory Properties of Ti-Ta-Sn High Temperature Shape Memory Alloys, Mater. Sci. Eng., A, 2011, 528(24), p 7238–7246Google Scholar
  41. 41.
    H. Kim, Y. Ikehara, J. Kim, H. Hosoda, and S. Miyazaki, Martensitic Transformation, Shape Memory Effect and Superelasticity of Ti-Nb Binary Alloys, Acta Mater., 2006, 54(9), p 2419–2429Google Scholar
  42. 42.
    Y. Chai, H. Kim, H. Hosoda, and S. Miyazaki, Self-Accommodation in Ti-Nb Shape Memory Alloys, Acta Mater., 2009, 57(14), p 4054–4064Google Scholar
  43. 43.
    J.L. Murray, The Nb-Ti (Niobium-Titanium) System, Bull. Alloy Phase Diagr., 1981, 2(1), p 55–61Google Scholar
  44. 44.
    H.Y. Kim and S. Miyazaki, Martensitic Transformation and Superelastic Properties of Ti-Nb Base Alloys, Mater. Trans., 2015, 56(5), p 625–634Google Scholar
  45. 45.
    Y. Guo, beta-bcc and Amorphous Ti-Based Biocompatible Alloys for Human Body Implants, Université Grenoble Alpes, 2014Google Scholar
  46. 46.
    B. Sharma, S.K. Vajpai, and K. Ameyama, Microstructure and Properties of Beta Ti-Nb Alloy Prepared by Powder Metallurgy Route Using Titanium Hydride Powder, J. Alloy. Compd., 2016, 656, p 978–986Google Scholar
  47. 47.
    A. Nouri, J. Lin, Y. Li, Y. Yamada, P. Hodgson, C. Wen, Microstructure Evolution of Ti-Sn-Nb Alloy Prepared by Mechanical Alloying, in Materials Forum (CD-ROM), 2007, Institute of Materials Engineering Australasia, pp. 64–70Google Scholar
  48. 48.
    Q.-M. Hu, S.-J. Li, Y.-L. Hao, R. Yang, B. Johansson, and L. Vitos, Phase Stability and Elastic Modulus of Ti Alloys Containing Nb, Zr, and/or Sn from First-Principles Calculations, Appl. Phys. Lett., 2008, 93(12), p 121902Google Scholar
  49. 49.
    Y. Guo, K. Georgarakis, Y. Yokoyama, and A. Yavari, On the Mechanical Properties of TiNb Based Alloys, J. Alloy. Compd., 2013, 571, p 25–30Google Scholar
  50. 50.
    C. Lee, C.-P. Ju, and J. Chern Lin, Structure-Property Relationship of Cast Ti-Nb Alloys, J. Oral Rehabil., 2002, 29(4), p 314–322Google Scholar
  51. 51.
    R.P. Kolli, W.J. Joost, and S. Ankem, Phase Stability and Stress-Induced Transformations in Beta Titanium Alloys, JOM, 2015, 67(6), p 1273–1280Google Scholar
  52. 52.
    S. Ehtemam-Haghighi, Y. Liu, G. Cao, and L.-C. Zhang, Influence of Nb on the β → α Martensitic Phase Transformation and Properties of the Newly Designed Ti-Fe-Nb Alloys, Mater. Sci. Eng., C, 2016, 60, p 503–510Google Scholar
  53. 53.
    N. Vellios and P. Tsakiropoulos, The Role of Sn and Ti Additions in the Microstructure of Nb-18Si Base Alloys, Intermetallics, 2007, 15(12), p 1518–1528Google Scholar
  54. 54.
    I. Gorna, M. Bulanova, K. Valuiska, M. Bega, O.Y. Koval, A. Kotko, Y.I. Evich, and S. Firstov, Alloys of the Ti-Si-Sn System (Titanium Corner): Phase Equilibria, Structure, and Mechanical Properties, Powder Metall. Met. Ceram., 2011, 50(7–8), p 452–461Google Scholar
  55. 55.
    M. Kato and H.R. Pak, Thermodynamics of Stress-Induced First-Order Phase Transformations in Solids, Phys. Status Solidi B, 1984, 123(2), p 415–424Google Scholar
  56. 56.
    T.T. Sasaki, B.C. Hornbuckle, R.D. Noebe, G.S. Bigelow, M.L. Weaver, and G.B. Thompson, Effect of Aging on Microstructure and Shape Memory Properties of a Ni-48Ti-25Pd (At. Pct) Alloy, Metall. Mater. Trans. A, 2013, 44(3), p 1388–1400Google Scholar
  57. 57.
    J. Gutiérrez-Moreno, Y. Guo, K. Georgarakis, A. Yavari, G. Evangelakis, and C.E. Lekka, The Role of Sn Doping in the β-Type Ti-25 at.% Nb Alloys: Experiment and Ab Initio Calculations, J. Alloy. Compd., 2014, 615, p S676–S679Google Scholar
  58. 58.
    J. Nagels, M. Stokdijk, and P.M. Rozing, Stress Shielding and Bone Resorption in Shoulder Arthroplasty, J. Shoulder Elbow Surg., 2003, 12(1), p 35–39Google Scholar
  59. 59.
    M. Niinomi, Metallic Biomaterials, J. Artif. Organs, 2008, 11(3), p 105–110Google Scholar
  60. 60.
    X. Wu, Q. Peng, J. Zhao, and J. Lin, Effect of Sn Content on the Corrosion Behavior of Ti-Based Biomedical Amorphous Alloys, Int. J. Electrochem. Sci., 2015, 10, p 2045–2054Google Scholar
  61. 61.
    S.M. Amininezhad, A. Rezvani, M. Amouheidari, S.M. Amininejad, and S. Rakhshani, The Antibacterial Activity of SnO2 Nanoparticles Against Escherichia coli and Staphylococcus aureus, Zahedan J. Res. Med. Sci., 2015, 17(9), p e1053Google Scholar
  62. 62.
    P. Kamaraj, R. Vennila, M. Arthanareeswari, and S. Devikala, Biological Activities of Tin Oxide Nanoparticles Synthesized Using Plant Extract, Pharm. Pharm. Sci., 2014, 3, p 338–382Google Scholar
  63. 63.
    L.H. Yun Lu, Y. Hirakawa, and H. Sato, Antibacterial Activity of TiO2/Ti Composite Photocatalyst Films Treated by Ultrasonic Cleaning, Adv. Mater. Phys. Chem., 2012, 2, p 9–12Google Scholar
  64. 64.
    Y.S. Kim, E.S. Park, S. Chin, G.-N. Bae, and J. Jurng, Antibacterial Performance of TiO2 Ultrafine Nanopowder Synthesized by a Chemical Vapor Condensation Method: Effect of Synthesis Temperature and Precursor Vapor Concentration, Powder Technol., 2012, 215, p 195–199Google Scholar
  65. 65.
    Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui, and H. Toda, Corrosion Resistance and Biocompatibility of Ti-Ta Alloys for Biomedical Applications, Mater. Sci. Eng., A, 2005, 398(1), p 28–36Google Scholar
  66. 66.
    R. Ahmad and M. Sardar, TiO2 Nanoparticles as an Antibacterial Agents Against E. coli, Int. J. Innov. Res. Sci. Eng. Technol., 2013, 2(8), p 3569–3574Google Scholar
  67. 67.
    G. Ramírez, S. Rodil, H. Arzate, S. Muhl, and J. Olaya, Niobium Based Coatings for Dental Implants, Appl. Surf. Sci., 2011, 257(7), p 2555–2559Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Mustafa K. Ibrahim
    • 1
    Email author
  • E. Hamzah
    • 1
  • Safaa N. Saud
    • 2
  1. 1.Faculty of Mechanical EngineeringUniversiti Teknologi Malaysia (UTM)Johor BahruMalaysia
  2. 2.Faculty of Information Sciences and EngineeringManagement and Science UniversityShah AlamMalaysia

Personalised recommendations