Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 372–381 | Cite as

Investigation of the Edge Crack Sensitivity of Cold Rolled Hot-Dip Galvanized DP780 Steels

  • Yun Han
  • Xingrong ChuEmail author
  • Shuang Kuang
  • Tao Li
  • Chunqian Xie
  • Huaxiang Teng
Article
  • 51 Downloads

Abstract

In this work, the edge crack sensitivities of two cold rolled hot-dip galvanized DP780 steels with similar chemical compositions were investigated. Using a bulging test device and the GOM-ARAMIS system, the strain distribution contour and different points of strain evolution affected by edge crack sensitivity were obtained. Based on the strain localization theory and strain evolution characteristics, the edge crack sensitivity was evaluated according to the order of necking and edge cracking during the bulging process. Edge-milled and blanking punched specimens were prepared to verify the edge crack sensitivity. The edge crack sensitivity was proved to exist, and milled-edge specimens eliminated its influence. Although they had similar mechanical properties, two hot-dip galvanized DP780 steels presented different edge crack sensitivities. The #1 DP780 steel presented a clearer edge crack sensitivity than #2 steel. The microstructural influences on the materials’ mechanical properties and edge crack sensitivity were investigated and discussed. It was found that the added Nb+Ti elements in #2 steel improved the phase interface bonding strength and further lowered the edge crack sensitivity.

Keywords

bulging test DP780 steel edge crack sensitivity microstructure necking 

References

  1. 1.
    S.L. Han, B. Hwang, S. Lee, G.L. Chang, and S.J. Kim, Effects of Martensite Morphology and Tempering on Dynamic Deformation Behavior of Dual-Phase Steels, Metall. Mater. Trans. A, 2004, 35(8), p 2371–2382CrossRefGoogle Scholar
  2. 2.
    G. Avramovic-Cingara, Y. Ososkov, M.K. Jain, and D.S. Wilkinson, Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels, Mater. Sci. Eng., A, 2009, 516(1), p 7–16CrossRefGoogle Scholar
  3. 3.
    G. Avramovic-Cingara, C.A.R. Saleh, M.K. Jain, and D.S. Wilkinson, Void Nucleation and Growth in Dual-Phase Steel 600 During Uniaxial Tensile Testing, Metall. Mater. Trans. A, 2009, 40(13), p 3117–3127CrossRefGoogle Scholar
  4. 4.
    Z. Teng and X. Chen, Edge Cracking Mechanism in Two Dual-Phase Advanced High Strength Steels, Mater. Sci. Eng., A, 2014, 618, p 645–653CrossRefGoogle Scholar
  5. 5.
    L.M.V. Tigrinho, R.A. Chemin Filho, and P.V.P. Marcondes, Fracture Analysis Approach of DP600 Steel when Subjected to Different Stress/Strain States During Deformation, Int. J. Adv. Manuf. Technol., 2013, 69(5–8), p 1017–1024CrossRefGoogle Scholar
  6. 6.
    B. Ma, Z. Liu, Z. Jiang, X. Wu, K. Diao, and M. Wan, Prediction of Forming Limit in DP590 Steel Sheet Forming: An Extended Fracture Criterion, Mater. Des., 2016, 96, p 401–408CrossRefGoogle Scholar
  7. 7.
    C.D. Schwindt, M. Stout, L. Iurman, and J.W. Signorelli, Forming Limit Curve Determination of a DP-780 Steel Sheet, Procedia Mater. Sci., 2015, 8, p 978–985CrossRefGoogle Scholar
  8. 8.
    X. Song, L. Leotoing, D. Guines, and E. Ragneau, Characterization of Forming Limits at Fracture with an Optimized Cruciform Specimen: Application to DP600 Steel Sheets, Int. J. Mech. Sci., 2017, 126, p 35–43CrossRefGoogle Scholar
  9. 9.
    K. Hasegawa, K. Kawamura, T. Urabe, and Y. Hosoya, Effects of Microstructure on Stretch-Flange-Formability of 980 MPa Grade Cold-Rolled Ultra High Strength Steel Sheets, ISIJ Int., 2004, 44(3), p 603–609CrossRefGoogle Scholar
  10. 10.
    E. Doege and B. Behrens, Handbuch Umformtechnik–Grundlagen, Technologien, Maschinen, 2. Bearbeitete Auflage, Springer, Berlin, 2010Google Scholar
  11. 11.
    M.A. Ablat and A. Qattawi, Numerical Simulation of Sheet Metal Forming: A Review, Int. J. Adv. Manuf. Technol., 2017, 89(1–4), p 1235–1250CrossRefGoogle Scholar
  12. 12.
    M. Dilmec, H.S. Halkaci, F. Ozturk, H. Livatyali, and O. Yigit, Effects of Sheet Thickness and Anisotropy on Forming Limit Curves of AA2024-T4, Int. J. Adv. Manuf. Technol., 2013, 67(9-12), p 2689–2700CrossRefGoogle Scholar
  13. 13.
    Metallic NN (2009) Materials—Sheet and Strip—Hole Expanding Test. ISO 16630, ISO copyright office, Geneva, SwitzerlandGoogle Scholar
  14. 14.
    Dykeman J, Malcolm S, Yan B, Chintamani J, Huang G, Ramisetti N, Zhu H (2011) Characterization of Edge Fracture in Various Types of Advanced High Strength Steel. SAE Technical PaperGoogle Scholar
  15. 15.
    M. Feistle, R. Golle, and W. Volk, Determining the Influence of Shear Cutting Parameters on the Edge Cracking Susceptibility of High-Strength-Steels Using the Edge-Fracture-Tensile-Test, Procedia CIRP, 2016, 41, p 1078–1083CrossRefGoogle Scholar
  16. 16.
    P. Sartkulvanich, B. Kroenauer, R. Golle, A. Konieczny, and T. Altan, Finite Element Analysis of the Effect of Blanked Edge Quality Upon Stretch Flanging of AHSS, CIRP Ann., 2010, 59(1), p 279–282CrossRefGoogle Scholar
  17. 17.
    Konieczny A, Henderson T (2007) On Formability Limitations in Stamping Involving Sheared Edge Stretching. SAE Technical PaperGoogle Scholar
  18. 18.
    X. Wu, H. Bahmanpour, and K. Schmid, Characterization of Mechanically Sheared Edges of Dual Phase Steels, J. Mater. Process. Technol., 2012, 212(6), p 1209–1224CrossRefGoogle Scholar
  19. 19.
    N. Vajragupta, V. Uthaisangsuk, B. Schmaling, S. Münstermann, A. Hartmaier, and W. Bleck, A Micromechanical Damage Simulation of Dual Phase Steels Using XFEM, Comput. Mater. Sci., 2012, 54, p 271–279CrossRefGoogle Scholar
  20. 20.
    A. Ramazani, A. Schwedt, A. Aretz, U. Prahl, and W. Bleck, Characterization and Modelling of Failure Initiation in DP Steel, Comput. Mater. Sci., 2013, 75, p 35–44CrossRefGoogle Scholar
  21. 21.
    X. Zhuang, C. Xu, and Z. Zhao, Experimental and Numerical Investigation of Failure Mode in Geometrically Imperfect DP590 Steel, Sci. China Technol. Sci., 2015, 58(3), p 476–484CrossRefGoogle Scholar
  22. 22.
    C. Zhang, L. Leotoing, G. Zhao, D. Guines, and E. Ragneau, A Comparative Study of Different Necking Criteria for Numerical and Experimental Prediction of FLCs, J. Mater. Eng. Perform., 2011, 20(6), p 1036–1042CrossRefGoogle Scholar
  23. 23.
    R. Wei, K. Kanno, and M. Enomoto, Alloying Element Partition and Growth Kinetics of Proeutectoid Ferrite in Hot-Deformed Fe-0.1 C-3Mn-1.5 Si Austenite, Metall. Mater. Trans. A, 2011, 42(8), p 2189–2198CrossRefGoogle Scholar
  24. 24.
    W. Srijampan, A. Wiengmoon, M. Morakotjinda, R. Krataitong, T. Yotkaew, N. Tosangthum, and R. Tongsri, Microstructure and Mechanical Property of Sintered Fe-Cr-Mo Steels Due to Phase Transformations with Fast Cooling Rates, Mater. Des., 2015, 88, p 693–701CrossRefGoogle Scholar
  25. 25.
    G. Avramovic-Cingara, Y. Ososkov, M. Jain, and D. Wilkinson, Effect of Martensite Distribution on Damage Behaviour in DP600 Dual Phase Steels, Mater. Sci. Eng., A, 2009, 516(1–2), p 7–16CrossRefGoogle Scholar
  26. 26.
    K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, and T. Senuma, Influence of Ti and Nb on the Strength–Ductility–Hole Expansion Ratio Balance of Hot-Rolled Low-Carbon High-Strength Steel Sheets, ISIJ Int., 2012, 52(1), p 151–157CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yun Han
    • 1
  • Xingrong Chu
    • 2
    Email author
  • Shuang Kuang
    • 1
  • Tao Li
    • 1
  • Chunqian Xie
    • 1
  • Huaxiang Teng
    • 1
  1. 1.Shougang Research Institute of TechnologyBeijingPeople’s Republic of China
  2. 2.Associated Engineering Research Center of Mechanics and Mechatronic Equipment, Shandong UniversityWeihaiPeople’s Republic of China

Personalised recommendations