Advertisement

Journal of Materials Engineering and Performance

, Volume 28, Issue 1, pp 343–354 | Cite as

Influence of Bias Voltage and CH4/N2 Gas Ratio on the Structure and Mechanical Properties of TiCN Coatings Deposited by Cathodic Arc Deposition Method

  • Nikolay PetkovEmail author
  • Egor Kashkarov
  • Aleksei Obrosov
  • Totka Bakalova
  • Pavel Kejzlar
  • Hristo Bahchedzhiev
Article
  • 82 Downloads

Abstract

This article presents a study of the influence of the bias voltage and CH4/N2 gas ratio on the structure and mechanical properties of TiCN coatings. The coatings are deposited by cathodic arc deposition technology from Ti cathodes under an atmosphere of a mixture of CH4 and N2 gasses. XRD analysis shows that an increase in the methane flow changes the preferential orientation of the coating from (111) to (200) and results in a refinement of the structure (grain size reduction from 23 to 7 nm). SEM analysis shows that the coatings are stoichiometric. It was demonstrated that the bias voltage has an influence on the grain size, hardness and elasticity module. The highest hardness value of 52.5 GPa was measured at the coatings lacking a clear preferential orientation. The adhesion of the coatings showed a critical load in the range of 29-64 N.

Keywords

cathodic arc deposition nanohardness TiCN coatings XRD analysis 

Notes

Acknowledgments

This paper was supported through the project “Special transformation mechanisms in drives with electronic cams” Registration Number FV20547, obtained through the financial support of the Ministry of Industry and Trade in the program MPO TRIO and the Technical University of Liberec as part of the project Technical University of Liberec, Faculty of Mechanical Engineering with the support of the Institutional Endowment for the Long Term Conceptual Development of Research Institutes, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2018. The research was also funded by the Governmental program “Science,” Research Project 11.3683.2017/4.6 as well as Tomsk Polytechnic University Competitiveness Enhancement Program.

References

  1. 1.
    M. Rebelo de Figueiredo, J. Neidhardt, R. Kaindl, A. Reiter, R. Tessadri, and C. Mitterer, Formation Mechanisms of Low-Friction Tribo-layers on Arc-Evaporated TiC1−xNx Hard Coatings, Wear, 2008, 265, p 525–532CrossRefGoogle Scholar
  2. 2.
    O. Knotek, F. Loffler, and G. Kramer, Deposition, Properties and Performance Behaviour of Carbide and Carbonitride PVD Coatings, Surf. Coat. Technol., 1993, 61, p 320–325CrossRefGoogle Scholar
  3. 3.
    Y.Y. Guu and J.F. Lin, Analysis of Wear Behaviour of Titanium Carbonitride Coatings, Wear, 1997, 210, p 245–254CrossRefGoogle Scholar
  4. 4.
    J.H. Hsieh, A.L.K. Tan, and X.T. Zeng, Oxidation and Wear Behaviors of Ti-Based Thin Films, Surf. Coat. Technol., 2006, 201, p 4094–4098CrossRefGoogle Scholar
  5. 5.
    G. Baravian, G. Sultan, E. Damond, and H. Detour, Optical Emission Spectroscopy of Active Species in a TiCN PVD Arc Discharge, Surf. Coat. Technol., 1995, 76(77), p 687–693CrossRefGoogle Scholar
  6. 6.
    E. Gergmann, H. Kaufmann, R. Schmid, and J. Vogel, Ion-Plated Titanium Carbonitride Films, Surf. Coat. Technol., 1990, 42, p 237–251CrossRefGoogle Scholar
  7. 7.
    Y.H. Cheng, T. Browne, B. Heckerman, and E.I. Meletis, Influence of the C Content on the Mechanical and Tribological Properties of the TiCN Coatings Deposited by LAFAD Technique, Surf. Coat. Technol., 2011, 205, p 4024–4029CrossRefGoogle Scholar
  8. 8.
    K. Narasimhan, S.P. Boppana, and D.G. Bhat, Development of a Graded TiCN Coating for Cemented Carbide Cutting Tools—A Design Approach, Wear, 1995, 188, p 123–129CrossRefGoogle Scholar
  9. 9.
    N. Petkov, T. Bakalova, H. Bahchedzhiev, P. Kejzlar, and P. Louda, Influence of Coating Deposition Parameters on the Mechanical and Tribological Properties of TiCN Coatings, J. Nano Res., 2017, 49, p 98–107CrossRefGoogle Scholar
  10. 10.
    H.L. Wang, J.L. He, and M.H. Hon, Sliding Wear Resistance of TiCN Coatings on Tool Steel Made by Plasma-Enhanced Chemical Vapour Deposition, Wear, 1993, 169, p 195–200CrossRefGoogle Scholar
  11. 11.
    M. Abedi, A. Abdollah-Zadeh, M. Bestetti, A. Vicenzo, A. Serafini, and F. Movassagh-Alanagh, The Effects of Phase Transformation on the Structure and Mechanical Properties of TiSiCN Nanocomposite Coatings Deposited by PECVD Method, Appl. Surf. Sci., 2018, 444, p 377–386CrossRefGoogle Scholar
  12. 12.
    S. Datta, M. Das, V.K. Balla, S. Bodhak, and V.K. Murugesan, Mechanical, Wear, Corrosion and Biological Properties of Arc Deposited Titanium Nitride Coatings, Surf. Coat. Technol., 2018, 344, p 214–222CrossRefGoogle Scholar
  13. 13.
    M.-T. Lin, C.-H. Wan, and W. Wu, Characterization and Corrosion Resistance of TiZr Coating on SS304 Stainless Steel Using Cathodic Arc Evaporation Techniques, Surf. Coat. Technol., 2017, 320, p 217–225CrossRefGoogle Scholar
  14. 14.
    F. Aliaj, N. Syla, S. Avdiaj, and T. Dilo, Effect of Bias Voltage on Microstructure and Mechanical Properties of Arc Evaporated (Ti, Al)N Hard Coatings, Bull. Mater. Sci., 2013, 36(3), p 429–435CrossRefGoogle Scholar
  15. 15.
    J. Romero, M.A. Gómez, J. Esteve, F. Montalà, L. Carreras, M. Grifol, and A. Lousa, CrAlN Coatings Deposited by Cathodic Arc Evaporation at Different Substrate Bias, Thin Solid Films, 2006, 515, p 113–117CrossRefGoogle Scholar
  16. 16.
    B. Warcholinski and A. Gilewicz, Effect of Substrate Bias Voltage on the Properties of CrCN and CrN Coatings Deposited by Cathodic Arc Evaporation, Vacuum, 2013, 90, p 145–150CrossRefGoogle Scholar
  17. 17.
    Y. Cheng, T. Browne, and B. Heckerman, Influence of CH4 Fraction on the Composition, Structure, and Internal Stress of the TiCN Coatings Deposited by LAFAD Technique, Vacuum, 2010, 85, p 89–94CrossRefGoogle Scholar
  18. 18.
    L.F. Senna, C.A. Achete, T. Hirsch, and F.L. Freire, Jr., Structural, Chemical, Mechanical and Corrosion Resistance Characterization of TiCN Coatings Prepared by Magnetron Sputtering, Surf. Coat. Technol., 1997, 94–95, p 390–397CrossRefGoogle Scholar
  19. 19.
    S. Huang, M. Ng, M. Samandi, and M. Brandt, Tribological Behaviour and Microstructure of TiCxN(1−x) Coatings Deposited by Filtered Arc, Wear, 2002, 252, p 566–579CrossRefGoogle Scholar
  20. 20.
    W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, and G. Groboth, Solid State Properties of Group IVb Carbonitrides, J. Alloys Compd., 1995, 217(1), p 137–147.  https://doi.org/10.1016/0925-8388(94)01315-9 CrossRefGoogle Scholar
  21. 21.
    W. Tillmann and S. Momeni, Tribological Development of TiCN Coatings by Adjusting the Flowing Rate of Reactive Gases, J. Phys. Chem. Solids, 2016, 90, p 45–53CrossRefGoogle Scholar
  22. 22.
    K.A. Kuptsov, P. Kiryukhantsev-Korneev, A.N. Sheveyko, and D.V. Shtansky, Comparative Study of Electrochemical and Impact Wear Behavior of TiCN, TiSiCN, TiCrSiCN, and TiAlSiCN Coatings, Surf. Coat. Technol., 2013, 216, p 273–281CrossRefGoogle Scholar
  23. 23.
    N. Saoula, N. Madaoui, R. Tadjine, R.M. Erasmus, S. Shrivastava, and J.D. Comins, Influence of substrate bias on the structure and properties of TiCN films deposited by radio-frequency magnetron sputtering, Thin Solid Films, 2016, 616, p 521–529.  https://doi.org/10.1016/j.tsf.2016.08.047 CrossRefGoogle Scholar
  24. 24.
    N. Petkov, T. Bakalova, T. Cholakova, H. Bahchedzhiev, P. Louda, P. Rysanek, M. Kormunda, P. Capkova, and P. Kejzlar, Study of Surface Morphology, Structure, Mechanical and Tribological Properties of an AlSiN Coating Obtained by the Cathodic Arc Deposition Method, Superlattices Microstruct., 2017, 109, p 402–413CrossRefGoogle Scholar
  25. 25.
    W. Oliver and G. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7, p 1564–1583.  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  26. 26.
    D.M. Sanders and A. Anders, Review of Cathodic Arc Deposition Technology at the Start of the New Millennium, Surf. Coat. Technol., 2000, 133–134, p 78–90CrossRefGoogle Scholar
  27. 27.
    P.J. Kelly and R.D. Arnell, Magnetron Sputtering: A Review of Recent Developments and Applications, Vacuum, 2000, 56, p 159–172CrossRefGoogle Scholar
  28. 28.
    G.P. Zhang, G.J. Gao, X.Q. Wang, G.H. Lv, L. Zhou, H. Chen, H. Pang, and S.Z. Yang, Influence of Pulsed Substrate Bias on the Structure and Properties of Ti-Al-N Films Deposited by Cathodic Vacuum Arc, Appl. Surf. Sci., 2012, 258, p 7274–7279CrossRefGoogle Scholar
  29. 29.
    A.N. Kale, K. Ravindranath, D.C. Kothari, and P.M. Raole, Tribological Properties of (Ti, Al)N Coatings Deposited at Different Bias Voltages Using the Cathodic Arc Technique, Surf. Coat. Technol., 2001, 145, p 60–70CrossRefGoogle Scholar
  30. 30.
    P.J. Martin and A. Bendavid, Review of the Filtered Vacuum Arc Process and Materials Deposition, Thin Solid Films, 2001, 394, p 1–14CrossRefGoogle Scholar
  31. 31.
    D.O. Sivin, A.I. Ryabchikov, A.I. Bumagina, O.S. Tupikova, and N.V. Daneikina, Titanium Macroparticles Density Decreasing on the Sample, Immersed in Plasma, at Repetitively Pulsed Biasing, Appl. Surf. Sci., 2014, 310, p 126–129CrossRefGoogle Scholar
  32. 32.
    R. Aharonov, M. Chhowalla, S. Dhar, and R. Fontana, Factors Affecting Growth Defect Formation in Cathodic Arc Evaporated Coatings, Surf. Coat. Technol., 1996, 82, p 334–343CrossRefGoogle Scholar
  33. 33.
    P. Panjan, M. Cekada, M. Panjan, and D. Kek-Merl, Growth Defects in PVD Hard Coatings, Vacuum, 2010, 84, p 209–2014CrossRefGoogle Scholar
  34. 34.
    J. Schneider, A. Voevodin, C. Rebholz, A. Matthews, J. Hogg, D. Lewis, and M. Ives, X-Ray Diffraction Investigations of Magnetron Sputtered TiCN Coatings, Surf. Coat. Technol., 1995, 75, p 312–319CrossRefGoogle Scholar
  35. 35.
    D. Gall, S. Kodambaka, M. Wall, I. Petrov, and J. Greene, Pathways of Atomistic Processes on TiN (001) and (111) Surfaces During Film Growth: An Ab Initio Study, J. Appl. Phys., 2003, 93, p 9086–9094CrossRefGoogle Scholar
  36. 36.
    U. Jansson and E. Lewin, Sputter Deposition of Transition-Metal Carbide Films—A Critical Review from a Chemical Perspective, Thin Solid Films, 2013, 536, p 1–24CrossRefGoogle Scholar
  37. 37.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd ed., Addison Wesley, Reading, 1978Google Scholar
  38. 38.
    J. Almer, M. Odén, and G. Hakansson, Microstructure, Stress and Mechanical Properties of Arc-Evaporated Cr-C-N Coatings, Thin Solid Films, 2001, 385(1–2), p 190–197CrossRefGoogle Scholar
  39. 39.
    T. Kimura, R. Yoshida, K. Azuma, and S. Nakao, Preparation of Titanium Carbon Nitride Films by Reactive High Power Pulsed Sputtering Penning Discharges, Vacuum, 2018, 157, p 192–201CrossRefGoogle Scholar
  40. 40.
    J.E. Sundgren, B.O. Johansson, H.T.G. Hentzell, and S.E. Karlsson, Mechanisms of Reactive Sputtering of Titanium Nitride and Titanium Carbide III: Influence of Substrate Bias on Composition and Structure, Thin Solid Films, 1983, 105, p 385–393CrossRefGoogle Scholar
  41. 41.
    N. Jiang, H.J. Zhang, S.N. Bao, Y.G. Shen, and Z.F. Zhou, XPS Study for Reactively Sputtered Titanium Nitride Thin Films Deposited Under Different Substrate Bias, Physica B, 2004, 352, p 118–126CrossRefGoogle Scholar
  42. 42.
    M. Benegra, D.G. Lamas, M.E. Fernández de Rapp, N. Mingolo, A.O. Kunrath, and R.M. Souza, Residual Stresses in Titanium Nitride Thin Films Deposited by Direct Current and Pulsed Direct Current Unbalanced Magnetron Sputtering, Thin Solid Films, 2006, 494, p 146–150CrossRefGoogle Scholar
  43. 43.
    C.-L. Chang, C.-T. Lin, P-Ch Tsai, W.-Y. Ho, and D.-Y. Wang, Influence of Bias Voltages on the Structure and Wear Properties of TiSiN Coating Synthesized by Cathodic Arc Plasma Evaporation, Thin Solid Films, 2008, 516, p 5324–5329CrossRefGoogle Scholar
  44. 44.
    G. Levi, W. Kaplan, and M. Bamberger, Structure Refinement of Titanium Carbonitride (TiCN), Mater. Lett., 1998, 35, p 344–350CrossRefGoogle Scholar
  45. 45.
    P. Mi, J. He, Y. Qin, and K. Chen, Nanostructure Reactive Plasma Sprayed TiCN Coating, Surf. Coat. Technol., 2017, 309, p 1–15CrossRefGoogle Scholar
  46. 46.
    K. Chu, P. Shum, and Y. Shen, Substrate Bias Effects on Mechanical and Tribological Properties of Substitutional Solid Solution (Ti, Al)N Films Prepared by Reactive Magnetron Sputtering, Mater. Sci. Eng. B, 2006, 131, p 62–71CrossRefGoogle Scholar
  47. 47.
    G. Cater, Peening in Ion-Assisted Thin-Film Deposition: A Generalized Model, J. Phys. D Appl. Phys., 1994, 27, p 1046–1055CrossRefGoogle Scholar
  48. 48.
    G. Janssen, Stress and Strain in Polycrystalline Thin Films, Thin Solid Films, 2007, 515, p 6654–6664CrossRefGoogle Scholar
  49. 49.
    E. Mounier and Y. Pauleau, Mechanisms of Intrinsic Stress Generation in Amorphous Carbon Thin Films Prepared by Magnetron Sputtering, Diam. Relat. Mater., 1997, 6, p 1182–1191CrossRefGoogle Scholar
  50. 50.
    C. Carrasco, V. Vergara, R. Benavente, N. Mingolo, and J. Rios, The Relationship Between Residual Stress and Process Parameters in TiN Coatings on Copper Alloy Substrates, Mater. Charact., 2002, 48, p 81–88CrossRefGoogle Scholar
  51. 51.
    X. Wan, S. Zhao, Y. Yang, J. Gong, and C. Sun, Effects of Nitrogen Pressure and Pulse Bias Voltage on the Properties of Cr-N Coatings Deposited by Arc Ion Plating, Surf. Coat. Technol., 2010, 204, p 1800–1810CrossRefGoogle Scholar
  52. 52.
    L. Karlsson, L. Hultman, and J.-E. Sundgren, Influence of Residual Stresses on the Mechanical Properties of TiCxN1−x (x = 0, 0.15, 0.45) Thin Films Deposited by Arc Evaporation, Thin Solid Films, 2000, 371, p 167–177CrossRefGoogle Scholar
  53. 53.
    L. Karlsson, L. Hultman, M.P. Johansson, J.-E. Sundgren, and H. Ljungcrantz, Growth, Microstructure, and Mechanical Properties of Arc Evaporated TiCxN1−x (0 ≤ x≤1) films, Surf. Coat. Technol., 2000, 126, p 1–14CrossRefGoogle Scholar
  54. 54.
    F. Arrando, M.C. Polo, P. Molera, and J. Esteve, Comparative Study of High Corrosion Resistant TiCxN1−x and TiN Hard Coatings, Surf. Coat. Technol., 1994, 68(69), p 536–540CrossRefGoogle Scholar
  55. 55.
    J. Musil, Hard Nanocomposite Coating: Thermal Stability, Oxidation Resistance and Toughness, Surf. Coat. Technol., 2012, 207, p 50–65CrossRefGoogle Scholar
  56. 56.
    L.A. Dobrzanski, M. Staszuk, M. Pawlyta, W. Kwasny, and M. Pancielejko, Characteristics of Ti(C, N) and (Ti, Zr)N Gradient PVD Coatings Deposited onto Sintered Tool Materials, J. Achiev. Mater. Manuf. Eng., 2008, 31, p 629–634Google Scholar
  57. 57.
    E. Erturk, O. Knotek, W. Burgmer, H.-G. Prengel, H.-J. Heuvel, H.G. Dederichs, and C. Stossel, Ti(C, N) Coatings Using the Arc Process, Surf. Coat. Technol., 1991, 46, p 39–46CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Nikolay Petkov
    • 1
    Email author
  • Egor Kashkarov
    • 2
  • Aleksei Obrosov
    • 3
  • Totka Bakalova
    • 4
  • Pavel Kejzlar
    • 4
  • Hristo Bahchedzhiev
    • 1
  1. 1.Central Laboratory of Applied PhysicsBulgarian Academy of SciencesPlovdivBulgaria
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Chair of Physical Metallurgy and Materials TechnologyBrandenburg Technical UniversityCottbusGermany
  4. 4.Department of Material Science, Faculty of Mechanical EngineeringTechnical University of LiberecLiberecCzech Republic

Personalised recommendations